Moller Hybrid Toroid

Magnet Design Review

Jason Bessuille, MIT-Bates

Presented to JLAB Magnet Advisory Committee Monday, October 14, 2013

14OCT2013

Overview

- Coil CAD (review)
- Coil Cooling Design
- Several options presented in June 2013 Meeting; dimensions have since been fixed
- Site Infrastructure
- First Pass Carrier Design and analysis
 - Modified to improve deflections
 - Presented in June
- Carrier Evolution and iterations
 - Modified to further reduce deflections, maintain acceptance keep-out zones, allow adjustment
- Support Structure Conceptual design
 - Vacuum and air designs Presented in June
- In-Vacuum Support Structure design and analysis
 - This is our baseline design for ongoing analysis and budgetary purposes

140CT2013

Cooling

- Coil thermal analysis was presented at Collaboration meeting in June.
- We discovered that a separate pump / chiller would need to be located between magnet and site water, so pressure drop can be higher than site pressure
- Water temperatures fixed at 20 C supply / 60 C return.
- Conductor type has been fixed.

Moller Coil Cooling Summary							
Conductor: 8204 Date: 01-Oct-13							
Each coil consists of 11 pancakes. Pancake 4C is split into 2 uneven groups of cooling channels (2 x 5 turns + 1 x 6 turns)							
Pancakes / Cooling Circuit Cooling Circuit Pressure Flow /						Flow / Coil	
Pancake	Coil	/ Pancake	Circuit / Coil	Drop (atm)	Pancake (Ipm)	(lpm)	
1a	2	1	2	14.4	2.86	5.72	
1B	2	2	4	6.4	4.25	8.50	
2	2	1	2	9.0	2.41	4.81	
3	2	1	2	16.7	3.01	6.02	
4	2	2	4	5.6	4.06	8.13	
4C	1	3	3	5.7 / 9.4	6.54	6.54	

Cooling Circuits / Coil:	17	paths
Water Flow / Coil:	39.72	lpm
Water Flow / Coll.	10.5	gpm
Mator Flow / Toroid	278.03	lpm
water riow / ioroiu.	73.4	gpm
Maximum Proceuro	16.7	atm
Maximum Pressure.	245.2	psi

Hall A Infrastructure

- Hall A LCW Water System:
 - 500 GPM
 - 250 psi
 - 80-85 F supply / 110 F return
- Seperate Moller magnet cooling system is required
 - Must isolate local water from site water to prevent activated water getting topside
 - Will include chiller to reduce LCW supply to 15-20 C and maintain to within a few degrees
 - Will supply cooling to upstream torus, hybrid, and collimators.
- Hall A Power
 - Currently 0.86 MVA available
 - Best guess now is Hybrid alone will use 775 kW
 - Additional substation and power drops being installed for 2 MVA
- Crane
 - 20 Ton capacity

140CT2013

- Sufficient for assembling coils into support structure and loading into vacuum vessel
- Combined toroid + vacuum vessel might be above 20t, but no plans to move them together

Hall A Infrastructure

Left: Power drops from surface transformer, located at the upstream end of Hall A, beam-right. Right: penetrations (red arrow) for second surface transformer, and LCW lines. These will be converted to continuous large pipe (~8") all the way to the floor of the hall.

CompositeBeamTest.sldprt			
File Configuration	Default		
Model Type	Solid		
Loads	1000 N/m, uniform		
Restraints	Fixed ends		
Contacts	Bonded		

Previous Analysis

2226-00

Horizontal: 3.73 mm

12.9 deg from vertical: 1.14 mm

8

533e-002

Updated carrier to avoid particle tracks

Blue = Moller electrons – Must be avoided

OLD, Z=13.7 m

OLD, Z=11.4m

NEW, Z=11.4m

Updated carrier to avoid particle tracks

Moller_Coil Strongback.sldprt			
File Configuration	FEA, and FEA (6Strut)		
Model Type	Solid, Static		
Loads	Gravity + Coil Weight (265 kg) + Toroid Force (3000 lb)		
Restraints	Ends Fixed, and 3 pin kinematic		
Contacts	none		

X + Y Phi + Z X + Y 140

Compare clamped ends to kinematic 6strut support

	Clamped Vertical	Clamped Horizontal
Displacement mag. [mm]	1.139	3.997

	6-Strut Vertical	6-Strut Horizontal
Displacement mag. [mm]	2.942	3.625

Coil+Carrier Assy.SLDASM			
File Configuration	FEA2		
Model Type	Solid, Static		
Loads	Gravity + Toroid Force (3000 lb)		
Restraints	6-Strut		
Contacts	Bonded, Bolted (incl. no-penetration)		

- Includes equivalent homogenous coil, side-plates, and bolted connections
- Bolts are 7075-T6. Combination of 1/2" and 3/4" with 27 ft-lb and 82 ft-lb torque, respectively (k=0.2)
- Friction between bolted surfaces is 0.5

Coil+Carrier Assy.SLDASM			
File Configuration	FEA2		
Model Type	Solid, Static		
Loads	Gravity + Toroid Force (3000 lb)		
Restraints	6-Strut		
Contacts	Bonded, Bolted (incl. no-penetration)		

Horizontal orientation, Factor of Safety (showing areas between FoS = 2 and 50)

FoS for all areas is well above 2, except for the near strut pins. The strut pairs at either end should therefore be mounted non-coaxially, and oriented such that they share the gravity and toroid forces

Coil Assy.SLDASM			
File Configuration	FEA2		
Model Type	Solid, Static		
Loads	Coil Rounding Force		
Restraints	Fixed Bolt Holes		
Contacts	Bonded		

\rightarrow Deflection Plot (Max = 0.182 mm)

→ Stress Plot (Max = 23 MPa) Yield strength depends on specifics of composite and type of stress Most likely shear stress will need to be compared with delamination strength of GFRP or epoxy – copper bond

140CT2013

Moller Hybrid Support Stand Weldment ASSY.SLDASM (Rev A)

Moller Hybrid Support Stand Weldment ASSY.SLDASM (Rev A)			
File Configuration FEA2			
Study Name	Hanging, Floor, and Baseline		
Model Type	Solid, Static, mixed solid/beam		
Loads (common)	Gravity + Toroid Force (3000 lb)		
Restraints	various		
Contacts	bonded solid-solid , bonded beam-solid		

First pass at analyzing Frame: 3 main loading conditions

140CT2013

Why are the floor and hanging deflections so similar? The main difference between the \rightarrow models is that with the hanging condition, the upper z-beams are supported along their length, while for the floor condition, only the frame ends are supported. Looking at the reaction forces for the hanging case, we see that the vertical load carried by the z-beams is more than an order of magnitude less that that supported by the ends.

Beam rxn = (2.88+2.47)e3 N = 545 kgf $140CT_{end rxn}^{2013}$ = (3.51+3.44)e4 N = 7085 kgf

17 **Hanging reactions**

FX:

FY:

FZ:

FRes

MX:

MY:

MZ:

116 N

2.47e+003 N

-1.59e+003 N

2.94e+003 N

-26.4 N-m

-9.57 N-m

-23.3 N-m MRes: 36.5 N-m

→ Right: The highest stress was seen at the DS end of the hanging condition. At 92.6 MPa, it is well below the yield strength of 6061-T6 (275 MPa) but is still an area of concern. Because the mesh size here is relatively coarse (compared to salient dimensions of the parts), further studies should refine the mesh in these areas.

7.628e-004

6.993e-004

6.357e-004

5.721e-004

5.086e-004

3.814e-004

3.178e-004

2.543e-004

.271e-00

6.357e-005

 \leftarrow

Left: A look at the strain at the DS end shows a great deal of twisting on the fingers and heptagon supports. Since these members transfer the coil end support conditions (i.e. slope) to the frame, reducing strain here will improve overall deflection. Increasing torsional stiffness should reduce twisting of the fingers

Axial and bending (N/mm^2 (MPa))

Moller Hybrid Support Stand Weldment ASSY.SLDASM (Rev A)			
File Configuration FEA2			
Study Name	Crane		
Model Type	Solid, Static, mixed solid/beam		
Loads (common)	Gravity + Toroid Force (3000 lb)		
Restraints	4 Nodes		
Contacts	bonded solid-solid , bonded beam-solid		

Quick check of stresses in beams: Worst case while lifting with crane

Design Evolution

Summary

- 1. Coil Conductor and # cooling paths has been set, and work will continue to determine conductor splice locations and where services go. Design of chiller system awaiting further inputs from upstream torus and collimator simulations
- A realistic coil carrier has evolved over several iterations to avoid particle tracks and to utilize kinematic, adjustable supports. The resulting local coil deflection is < 3 mm.
- The coil support concept analyzed shows very little coil deflection due to internal "rounding" forces (< 0.25 mm). Further analysis will consider failure modes unique to composite structures. However, approximation using homogeneous material showed very low stresses in the coils.
- 4. A realistic aluminum frame has been shown to contribute < 4 mm to the overall deflection of a set of 7 simple coil carriers with clamped end connections. This will be reduced when a model with complete carriers with kinematic supports is analyzed.

Backup

Size Comparison

Plii

14OCT2013

Coil Cooling

- Assumptions for cooling analysis:
 - Pure water is used as cooling medium
 - Maximum water pressure will be limited to 17 atm (\approx 250 psi)
 - Inlet temperature 15 C, outlet temperatures from 50 80 C are explored
 - Fittings and bends not yet considered in pressure drop calculations
- We are conducting ongoing discussions with JLab Hall engineers to determine cooling plant requirements and availability.

24

2013-06-20

J. Bessuille - MOLLER Spectrometer

Conductors

Hollow Cu conductors are available in a variety of standard sizes. I'm using data from Luvata; http://www.luvata.com/en/Products--Markets/Products/Hollow-Conductors/

From original TOSCA design

Conductor Style and Resulting Power and Voltage for I=384 A			Flow Properties assumin turns / cooling circuit;	g 4 average-length 45 deg C deltaT	
Part #	Current Density [A/cm ²]	Toroid Voltage Drop [V]	Toroid power [kW]	Velocity (4 turns in parallel) [m/s]	Pressure Drop (avg) [atm]
6093	2358	2377	913	3.04	14
8674	1748	1762	677	2.68	13
8339	1553	1566	601	3.03	17
8204	1996	2012	773	1.95	5

•

Cooling Circuits

By setting an allowable temperature rise, we determine the required coolant flow rate. Each conductor has a different electrical and hydraulic resistance, both of which contribute to the pressure drop.

For a given conductor and temperature rise, we can look at the pressure drops that are realized from splitting each pancake into different numbers of cooling paths. Setting a limit on the pressure allows to establish the optimal (minimum) number of cooling circuits for a given configuration.

2013-06-20