Proof of Concept Radiation Shielding Design

Rakitha Beminiwattha Syracuse University MOLLER Engineering Meeting July 2016

Rakitha Beminiwattha - MOLLER Eng. Meeting

Shielding Design

- Single collimator to intercept low angle scattered beam
 - To isolate neutron production
- Target shielding required a lead wall
 - To stop EM power from the target
- Concrete and Tungsten for high energy neutrons
- Polythene for low energy neutrons (< 10 MeV)
- Goal of the shielding is to reduce the EM and neutron radiation into the hall A and reduce background at the detector region

07/11/2016

Rakitha Beminiwattha - MOLLER Eng. Meeting

Wall size can be further reduced

Collimation System

- Block two bounce photons to detectors
- Require radiation shielding
- Require precision alignment
- Require water cooling
- Two movable collimators for background and tracking studies

Beam-Interceptor Collimator : Power Deposit Comparison : CW95

Separate Collimators

Separate Col-1 and Col-3							
Collimator	Total	e-	e+	Gamma			
	(W)	(W)	(W)	(W)			
1	3238.5	2141.5	996.7	97.8			
2	1757.5	1195.3	501.9	58.5			
3	1985.4	1331.7	588.4	63.5			
4	229.0	156.1	65.1	7.7			
5	34.7	23.0	10.5	1.1			

Collimators are made out of CW95 tungsten alloy

Total power deposited in all the Fins 400 W (57 W per Fin) at 85 uA

With Beam-Interceptor Collimator

Col-1 with Fins							
Collimator	Total	e-	e+	Gamma			
	(W)	(W)	(W)	(W)			
1	5820.5	3836.4	1811.3	170.6			
2	691.8	476.2	191.2	23.7			
3	0.0	0.0	0.0	0.0			
4	163.2	110.4	47.6	5.2			
5	31.8	20.9	9.9	1.0			
Fins Only	395.9	266.0	117.4	12.4			

Col-1 Binned						
		Edep (With	Edep (With			
Index	Z bin (cm)	no Fins)	Fins)			
1	0-5	210.7	201.7			
2	5-10	743.3	1168.0			
3	10-15	277.2	209.9			
4	15-20	882.3	905.6			
5	20-25	190.9	205.2			
6	25-30	764.1	775.99			
7	30-35	384.7	331.87			
8	35-40	1781.0	1854.23			
9	40-45	155.0	142.7			
10	45-50	17.8	25.43			

Power Deposit Map

Rakitha Beminiwattha

Radiation to the Hall with Tungsten Beam-pipe

- At current state radiation levels are about PREX-II
 - Only low energy neutrons are above the PREX-II limit!
 - Manageable with better poly-shielding
 - Now time for engineering input

07/11/2016

Radiation Power to Hall (top detector excluded)							
		Lead tgt Sheld + Concrete + Shield Beampipe + CW95 + Lead Collar	PREX_I	PREX_II			
Туре	E range	Power	Power	Power			
	(MeV)	(W/uA)	(W/uA)	(W/uA)			
e±	E<10	0.0004	0.1663	0.0091			
	10 <e< td=""><td>0.0585</td><td>1.2880</td><td>0.0562</td></e<>	0.0585	1.2880	0.0562			
Photons	E<10	0.0060	0.7455	0.0763			
	10 <e< td=""><td>0.0419</td><td>2.0330</td><td>0.1070</td></e<>	0.0419	2.0330	0.1070			
Neutrons	E<10	0.00002	0.0023	0.0003			
	10 <e< td=""><td>0.0006</td><td>0.0039</td><td>0.0012</td></e<>	0.0006	0.0039	0.0012			

Note: Prex simulation numbers only from "Hall Detector"

	Radiati	on Flux to) Hall (top det	ector excl	uded)
t <u>h</u>			Lead tgt Sheld + Concrete + Shield Beampipe + CW95 + Lead Collar	PREX I	PRFX II
	Туре	E range	Flux	Flux	Flux
		(MeV)	(Hz/uA)	(Hz/uA)	(Hz/uA)
	e±	E<10	3.43E+09	3.45E+11	2.05E+10
		10 <e< td=""><td>1.00E+09</td><td>2.10E+11</td><td>9.42E+09</td></e<>	1.00E+09	2.10E+11	9.42E+09
it.	Photons	E<10	6.29E+10	5.49E+12	6.41E+11
JL		10 <e< td=""><td>4.55E+09</td><td>3.43E+11</td><td>1.93E+10</td></e<>	4.55E+09	3.43E+11	1.93E+10
Rakitha l	Neutrons	E<10	2.99E+09	1.62E+10	1.79E+09
		10 <e< td=""><td>3.74E+07</td><td>3.93E+08</td><td>1.34E+08</td></e<>	3.74E+07	3.93E+08	1.34E+08
	Marte Die -	يمتنا منام الالم التنام	ala a va a valv v fiva va Kit		,

Note: Prex simulation numbers only from "Hall Detector"

Shielding Design : Top View

Shielding Design : Top View

Rakitha Beminiwattha - MOLLER Eng. Meeting

Rakitha Beminiwattha - MOLLER Eng. Meeting

07/11/2016

Rakitha Beminiwattha - MOLLER Eng. Meeting

Summary

- Present design is a proof of concept that MOLLER shielding is achievable
 - Goal : To reach PREX-II radiation levels \rightarrow **Done**
- Next steps in short term
 - Investigate major conflicts in the shielding design \rightarrow Next talk
 - Feedback from Engineers

Supplementary

Hall Radiation Energy Distributions Electrons

Hall Radiation Energy Distributions Photons

Hall Radiation Energy Distributions Neutrons

Radiation to Hall by Vertex Region

Contribution to the Total Radiation Flux : Before								
Туре	E range	ShTarget	ShBlock-1	ShBlock-2	ShBlock-3	ShBlock-4	Other	Total
	(MeV)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	E<10	16.1	2.7	6.2	0.5	0.2	74.3	100.0
e±	10 <e<100< td=""><td>32.6</td><td>2.0</td><td>1.8</td><td>0.4</td><td>0.3</td><td>62.9</td><td>100.0</td></e<100<>	32.6	2.0	1.8	0.4	0.3	62.9	100.0
	100 <e< td=""><td>56.5</td><td>0.1</td><td>0.7</td><td>0.0</td><td>0.0</td><td>42.8</td><td>100.0</td></e<>	56.5	0.1	0.7	0.0	0.0	42.8	100.0
	E<10	8.3	23.8	21.6	4.8	0.8	40.7	100.0
Photons	10 <e<100< td=""><td>29.7</td><td>10.6</td><td>11.3</td><td>1.9</td><td>5.8</td><td>40.6</td><td>100.0</td></e<100<>	29.7	10.6	11.3	1.9	5.8	40.6	100.0
	100 <e< td=""><td>44.0</td><td>0.2</td><td>16.1</td><td>1.5</td><td>2.8</td><td>35.5</td><td>100.0</td></e<>	44.0	0.2	16.1	1.5	2.8	35.5	100.0
	E<10	1.1	9.2	67.3	5.1	0.3	17.0	100.0
Neutrons	10 <e<100< td=""><td>27.7</td><td>15.8</td><td>6.4</td><td>0.7</td><td>0.7</td><td>48.6</td><td>100.0</td></e<100<>	27.7	15.8	6.4	0.7	0.7	48.6	100.0
	100 <e< td=""><td>46.0</td><td>11.2</td><td>7.4</td><td>0.9</td><td>0.0</td><td>34.4</td><td>100.0</td></e<>	46.0	11.2	7.4	0.9	0.0	34.4	100.0

	Contribution to the Total Radiation Flux : After							
Туре	E range	ShTarget	ShBlock-1	ShBlock-2	ShBlock-3	ShBlock-4	Other	Total
	(MeV)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	E<10	63.9	1.3	6.2	0.3	0.1	28.3	100.0
e±	10 <e<100< td=""><td>31.1</td><td>0.0</td><td>2.5</td><td>0.2</td><td>0.0</td><td>66.1</td><td>100.0</td></e<100<>	31.1	0.0	2.5	0.2	0.0	66.1	100.0
	100 <e< td=""><td>59.6</td><td>0.0</td><td>1.3</td><td>0.0</td><td>0.0</td><td>39.0</td><td>100.0</td></e<>	59.6	0.0	1.3	0.0	0.0	39.0	100.0
	E<10	9.1	18.9	24.3	3.0	1.5	43.2	100.0
Photons	10 <e<100< td=""><td>21.8</td><td>2.8</td><td>13.2</td><td>2.1</td><td>7.9</td><td>52.2</td><td>100.0</td></e<100<>	21.8	2.8	13.2	2.1	7.9	52.2	100.0
	100 <e< td=""><td>41.0</td><td>0.0</td><td>16.6</td><td>2.6</td><td>2.6</td><td>37.2</td><td>100.0</td></e<>	41.0	0.0	16.6	2.6	2.6	37.2	100.0
	E<10	21.7	7.6	58.9	1.7	0.3	9.7	100.0
Neutrons	10 <e<100< td=""><td>5.7</td><td>10.3</td><td>10.3</td><td>4.6</td><td>0.0</td><td>69.0</td><td>100.0</td></e<100<>	5.7	10.3	10.3	4.6	0.0	69.0	100.0
	100 <e< td=""><td>14.5</td><td>18.1</td><td>16.9</td><td>3.6</td><td>0.0</td><td>47.0</td><td>100.0</td></e<>	14.5	18.1	16.9	3.6	0.0	47.0	100.0

"Other" definition : All other vertices not in shielding blocks

Radiation to Top of the Hall

Comparable amount of radiation leaks to top of the hall

Radiation Side vs. Top							
Туре	E range	Cylinder	Тор	Total			
	(MeV)	(Hz/uA)	(Hz/uA)	(Hz/uA)			
	E<10	3.42E+09	9.07E+08	4.32E+09			
e±	10 <e<100< td=""><td>2.55E+08</td><td>1.81E+07</td><td>2.73E+08</td></e<100<>	2.55E+08	1.81E+07	2.73E+08			
	100 <e< td=""><td>7.41E+08</td><td>2.50E+06</td><td>7.43E+08</td></e<>	7.41E+08	2.50E+06	7.43E+08			
	E<10	6.54E+10	6.17E+10	1.27E+11			
Photons	10 <e<100< td=""><td>3.75E+09</td><td>1.86E+08</td><td>3.93E+09</td></e<100<>	3.75E+09	1.86E+08	3.93E+09			
	100 <e< td=""><td>6.78E+08</td><td>5.62E+06</td><td>6.83E+08</td></e<>	6.78E+08	5.62E+06	6.83E+08			
Neutrons	E<10	2.88E+09	2.39E+09	5.27E+09			
	10 <e<100< td=""><td>2.43E+07</td><td>3.00E+07</td><td>5.43E+07</td></e<100<>	2.43E+07	3.00E+07	5.43E+07			
	100 <e< td=""><td>2.68E+07</td><td>2.50E+07</td><td>5.18E+07</td></e<>	2.68E+07	2.50E+07	5.18E+07			

07/11/2016

23

07/11/201

25

540 Executive Drive Willowbrook, IL 60527 ph: 630-325-1001 fax: 630-325-3571 mts@tungsten.com

Tungsten Alloy Specifications

	17 gm/cc	17 gm/cc	17.5 gm/cc	18 gm/cc	18 gm/cc	18.5 gm/cc
Material *	90% W	90% W	92.5% W	95% W	95% W	97% W
	6% NI	7% NI 2% Eo	5.25% NI	3.5% NI	3.5% NI	2.1% NI
Doneity: Ibe/in ³	4% CU	376 FC	2.23% Fe	1.3% Cu	1.3 Fe	0.5% FE
Mil Spec T 21014 D	0.014 Class 1	0.014 Class 1	Class 2	Class 3	Class 3	Class 4
Will. Spec. 1-21014 D	CidSS I	CidSS 1	CidSS Z	Class 3	CidSS 3	CidSS 4
	Grade T	Grade	Grade 2	Grade 3	Grade 3	Grade 4
	Type II &&	Type II &&	Type II &&	Type II &&	Туре п &&	Type II &&
ASTM-B-459-67						
Hardness; Rockwell C	24	25	26	27	27	28
Ultimate Tensile						
Strength; PSI	110,000	120,000	114,000	110,000	120,000	123,000
Yield Strength, .2%						
Offset; PSI	80,000	88,000	84,000	85,000	90,000	85,000
Elongation, % in 1"	6	10	7	7	7	5
Proportional Elastic Limit;						
PSI	45,000	52,000	46,000	45,000	44,000	45,000
Modulus of Electicity: DSI	40×10^{6}	45 x 10 ⁶	47×10^{6}	45 × 10 ⁶	50 × 10 ⁸	52 x 10 ⁶
Modulus of Elasticity, FSI	40 X 10	45 X 10	47 X 10	45 X 10	50 X 10	55 X 10
Coefficient of Thermal						
Expansion (x 10 ^{-o} 1°C						
20°-400°C)	5.4	4.61	4.62	4.43	4.6	4.5
Thermal Conductivity;						
CGS Units	0.23	0.18	0.2	0.33	0.26	0.3
Electrical Conductivity;						
%IACS	14	10	13	16	13	17
		Slightly	Slightly		Slightly	Slightly
Magnetic Properties	NIL	Magnetic	Magnetic	NIL	Magnetic	Magnetic

07/11/2016

Tungsten vs. CW95

Material: CW95 density: 18.000 g/cm3 RadL: 3.848 mm Nucl.Int.Length: 10.804 cm Imean: 692.470 eV ---> Element: Tungsten () Z = 74.0 N = 183.8 A = 183.85 g/mole ---> Isotope: 180 Z = 74 N = 180 A = 179.95 g/mole abundance: 0.12 % 182 Z = 74 N = 182 A = 181.95 g/mole ---> Isotope: abundance: 26.50 % 183 Z = 74 ---> Isotope: N = 183 A = 182.95 g/mole abundance: 14.31 % $184 \quad Z = 74$ N = 184 A = 183.95 g/mole ---> Isotope: abundance: 30.64 % ---> Isotope: 186 Z = 74 N = 186 A = 185.95 g/mole abundance: 28.43 % ElmMassFraction: 95.00 % ElmAbundance 86.13 % ---> Element: Copper () Z = 29.0 N = 63.5 A = 63.54 g/mole 63 Z = 29 N = 63 A = 62.93 g/mole ---> Isotope: abundance: 69.17 % ---> Isotope: 65 Z = 29 N = 65 A = 64.93 g/mole abundance: 30.83 % ElmMassFraction: 1.50 % ElmAbundance 3.93 % ---> Element: Nickel (Ni) Z = 28.0 N = 58.8 A = 58.70 g/mole ---> Isotope: Ni58 Z = 28 N = 58 A = 57.94 g/mole abundance: 68.08 % ---> Isotope: Ni60 Z = 28 N = 60 A = 59.93 g/mole abundance: 26.22 % ---> Isotope: Ni61 Z = 28N = 61 A = 60.93 g/mole abundance: 1.14 % ---> Isotope: Ni62 Z = 28 N = 62 A = 61.93 g/mole abundance: 3.63 % ---> Isotope: Ni64 Z = 28 N = 64 A = 63.93 g/mole abundance: 0.93 % ElmMassFraction: 3.50 % ElmAbundance 9.94 %

Material: G4 W density: 19.300 g/cm3 RadL: 3.504 mm Nucl.Int.Length: 10.306 cm Imean: 727.000 eV ---> Element: W (W) Z = 74.0 N = 183.9 A = 183.84 a/mole ---> Isotope: W180 Z = 74 N = 180 A = 179.95 g/mole abundance: 0.12 % ---> Isotope: W182 Z = 74 N = 182 A = 181.95 g/mole abundance: 26.50 % ---> Isotope: W183 Z = 74 N = 183 A = 182.95 g/mole abundance: 14.31 % ---> Isotope: W184 Z = 74 N = 184 A = 183.95 g/mole abundance: 30.64 % ---> Isotope: W186 Z = 74 N = 186 $A = 185.95 \, q/mole$ abundance: 28.43 % ElmMassFraction: 100.00 % ElmAbundance 100.00 %