FEA of Coil Supports

J Bessuille June 2013 – Oct 2013

Model	
File Name	CompositeBeamTest
File Configuration	Default
Model Type	Solid
Loads	1000 N/m, uniform
Restraints	Fixed ends
Contacts	Bonded

ŧ

V

4

1. Create a composite beam that represents the geometry of the coils (copper + GFRP)

Model	
File Name	Coil+Carrier Assy.SLDASM
File Configuration	FEA
Model Type	Solid, Static
Loads	Gravity + Toroid Force (3000 lb)
Restraints	Spine Fixed
Contacts	Bonded

12.9 deg from vertical – 0.359 mm

Horizontal: 0.354 mm

URES (mm)

3.535e-001

3.241e-001

2.946e-001

2.651e-001

2.357e-001

2.062e-001

1.768e-001

1.473e-001

1.178e-001

8.838e-002

5.892e-002

2.946e-002

1.000e-030

Model	
File Name	Coil+Carrier Assy.SLDASM
File Configuration	FEA (revised)
Model Type	Solid, Static
Loads	Gravity + Toroid Force (3000 lb)
Restraints	Ends Fixed
Contacts	Bonded

- More realistic supports Clamped Ends
- Added 8" extra depth to spine of stongback to counterbalance new boundary condition
 - This brings the overall diameter of the 7 coil+carrier assemblies to ~60"
- This is a workable concept that will be further detailed and analyzed.

Model	
File Name	Moller_Coil Strongback.sldprt
File Configuration	FEA, and FEA (6Strut)
Model Type	Solid, Static
Loads	Gravity + Coil Weight (265 kg) + Toroid Force (3000 lb)
Restraints	Ends Fixed, and 3 pin kinematic
Contacts	none

X + Y Phi + Z X + Y

Compare clamped ends to kinematic 6strut support

	Clamped Vertical	Clamped Horizontal
Displacement mag. [mm]	1.139	3.997

	6-Strut Vertical	6-Strut Horizontal
Displacement mag. [mm]	2.942	3.625

Note: Both end pins co-axial. All 3 pin axes intersect predicted CG of coil+carrier assembly

Model	
File Name	Moller Hybrid Support Stand Weldment ASSY.SLDASM (Rev A)

Model		
File Name	Moller Hybrid Support Stand Weldment ASSY.SLDASM (Rev A)	
File Configuration	FEA2	
Study Name	Hanging, Floor, and Baseline	
Model Type	Solid, Static, mixed solid/beam	
Loads (common)	Gravity + Toroid Force (3000 lb)	
Restraints	various	
Contacts	bonded solid-solid , bonded beam-solid	

First pass at analyzing Frame

Model	
File Name	Moller Hybrid Support Stand Weldment ASSY.SLDASM (Rev A)
File Configuration	FEA2
Study Name	Crane
Model Type	Solid, Static, mixed solid/beam
Loads (common)	Gravity + Toroid Force (3000 lb)
Restraints	4 Nodes
Contacts	bonded solid-solid , bonded beam-solid

Quick check of stresses in beams: Worst case while lifting with crane

models is that with the hanging condition, the upper z-beams are supported along their length, while for the floor condition, only the frame ends are supported. Looking at the reaction forces for the hanging case, we see that the vertical load carried by the z-beams is more than an order of magnitude less that that supported by the ends.

> Beam rxn = (2.88+2.47)e3 N = 545 kgf End rxn = (3.51+3.44)e4 N = 7085 kgf

Hanging reactions

116 N 2.47e+003 N

-1.59e+003 N

2.94e+003 N

-26.4 N-m

-9.57 N-m

-23.3 N-m MRes: 36.5 N-m

FX: FY:

FZ:

FRes:

MX:

MY:

MZ:

→ Right: The highest stress was seen at the DS end of the hanging condition. At 92.6 MPa, it is well below the yield strength of 6061-T6 (275 MPa) but is still an area of concern. Because the mesh size here is relatively coarse (compared to salient dimensions of the parts), further studies should refine the mesh in these areas.

7.628e-004

6.993e-004

6.357e-004

5.721e-004

5.086e-004

3 814e-004

3.178e-00

2.543e-004

271e-004

6.357e-005

Left: A look at the strain at the DS end shows a great deal of twisting on the fingers and heptagon supports. Since these members transfer the coil end support conditions (i.e. slope) to the frame, reducing strain here will improve overall deflection. Increasing torsional stiffness should reduce twisting

Axial and bending (N/mm^2 (MPa))

The beam stresses are very low (-3.0 – 2.3 MPa) in the hanging and floorsupported models. This is because the ends of the frame, where the coil load is borne, are directly supported by either the vacuuim chamber (hanging) or the ground (floor). It is likely some of these members can be made smaller / thinner.

 \rightarrow

