$sin^2\theta_W(Q^2)$, Radiative Corrections and Z' Bosons

William J. Marciano September 10, 2014

"MOLLER at JLAB – A Special Opportunity" Exp. Expertise & Very Clean Precise Theory 12 GeV Accelerator Upgrade (Demands Flagship Experiments)

<u>Outline</u>

1. <u>Introductory Remarks</u>: sin²θ_W Status vs SM Z Pole vs low Q² & BSM

- 2. <u>EW Radiative Corrections</u> to Moller A_{RL} PV
 A. Czarnecki & WJM PRD (1996) Updated Uncertainty
 -40±0.36% Total Reduction (Running sin²θ_W(Q²))!
- 3. <u>Z' Boson Sensitivity</u> (extra U(1)' gauge symmetry) Strong Coupling g'~ 2 m_{Z'} ~ 8TeV EW GUT Coupling g'~½ m_{Z'} ~ 2TeV Light Z' with Very Small "Induced" Coupling (eg Dark Parity Violation) Low Q² Moller Sensitivity

Introductory Remarks

$sin^2\theta_W(Q^2)$ Status Z Pole vs low Q^2

 $MSbar \sin^2\theta_W(m_Z)_{MS} = \sin^2\theta_W^{lep} - 0.00028$

 $sin^{2} θ_{W}(m_{Z})_{MS} 0.23070(26) SLAC A_{RL}$ $sin^{2} θ_{W}(m_{Z})_{MS} 0.23193(29) CERN A_{FB}(bb)$ 3 sigma difference? Tension? $sin^{2} θ_{W}(m_{Z})_{MS} 0.23125(15) Z Pole Ave.$ $sin^{2} 2 θ_{W}(m_{Z})_{MS} = 2\sqrt{2} \pi \alpha / m_{Z}^{2} G_{\mu}(1-\Delta r'(m_{t},m_{H}))$ Through 2 loops $Δr'(m_{t},m_{H})=0.0598(2) → sin^{2} θ_{W}(m_{Z})_{MS} = 0.23124(6)$ Outstanding Agreement Severely constrains BSM

S & T Constraints Gauge Boson Self-Energy Loops

 $\frac{Experimental Averages}{m_{W}(m_{Z})_{MS}} = \frac{0.23125(15)}{0.23125(15)} & m_{W} = \frac{80.385(15)GeV}{0.23125(15)}$

 $\frac{Standard Model + S \& T}{\sin^2\theta_W(m_Z)_{MS}} = \frac{0.23124(6)[1+0.016S-0.011T]}{m_W = \frac{80.362(6)GeV[1-0.0036S+0.0056T]}{S \approx 0.7T (from Z pole sin^2\theta_W(m_Z)_{MS}} = \frac{0.23125(15)}{0.23125(15)})$ S=0.07(8) T=0.10(11) $\Delta N_{doublets}$ =2(2) Little (but some) room available for "New Physics" Constrains: New Dynamics (Technicolor), 4th Generation, SUSY, Z', Z'' (mixing)...

Best Off Z Resonance Measurements of $sin^2\theta_W$ (Not Competitive with Z Pole)

Reaction	sin²θ _w (m _z) _{MS}	<q></q>
Cs APV	0.2283(20)	2.5MeV
E158 ee	0.2329(13)	160MeV
Q _{weak} ep	0.2329(50)	160MeV
6GeV Dis eD	0.2299(43)	1.5GeV
NuTeV v _µ N	0.2356(16)	3-4GeV

<u>NuTeV</u> $sin^2\theta_w(m_z)_{MS} = 0.2356(16)$ (2+ sigma High) Beware The Theory Uncertainties!!!! A_{RI} (ee)=-131(14)(10)x10⁻⁹ α (1-4sin² θ_{W}) Best Low Q² Determination $sin^2\theta_w(m_z)_{MS} = 0.2329(13)$ Very Clean Theory

Measurements of running $\sin^2\theta_W(Q^2)$

6

E158 at SLAC Pol ee→ee Moller

 $E_e \approx 50 \text{GeV}$ on fixed target, Q²=0.02GeV²

 $A_{RL}(ee)$ =-131(14)(10)x10⁻⁹ α (1-4sin² θ_{W})

EW Radiative Corrections ~-40(3)%! (Czarnecki &WJM 1996)

More $sin^2 \theta_W$ *Sensitivity!*

Measured to $\pm 12\% \rightarrow \sin^2\theta_W$ to $\pm 0.6\%$ (20 to 1)

 $\rightarrow sin^2 \theta_W(m_Z)_{MS} = 0.2329(13)$ slightly high

Best Low Q² Determination of sin²θ_w

 $A_{RL}(ee)^{exp}=A_{RL}(ee)^{SM}(1+0.25T-0.34S+7(m_Z/m_{Z\chi})^2...)$ <u>Constrains</u> "New Physics" eq m_{Z\chi}>0.6TeV, H⁻⁻,S, Anapole Moment, 4 Fermion Operators ...

Together APV(Cs) & E158 $\rightarrow sin^2\theta_W(Q^2)$ running

 $sin^2\theta_W(m_Z)_{MS} = 0.232(1)$ Good agreement with Z Pole

Goals of Future Low Q² Experiments

 High Precision: Δsin²θ_W~±0.0002 - 0.0004 or better Low Q² Sensitivity to "New Physics" (eg Dark PV)

SUSY Loops Sensitivity in Moller vs SM & Z pole (Ramsey-Musolf Talk)

S≈0.7T?, Confirm Z Pole Ave/m_W determination? Z pole implies $|0.25T-0.34S| \le 10^{-3}$; <u>TRUE?</u>, If so, Charge radius X(Q²), Z' ... of prime importance Heavy $m_{Z'} > 1-8$ TeV, Model Dependent Sensitivities (Do not interfere at Z Pole) *Light $m_{Z'} < 10$ GeV (Dark Parity Violation) Sensitivity

$sin^2\theta_W(Q^2)$ Measurements & expected Future Sensitivities

9

Polarized ee, ep Asymmetries

• $A_{RL} = \sigma_R - \sigma_L / \sigma_R + \sigma_L$ Parity Violating αQ^2 very small

Experiment	<q>MeV</q>	Δsin²θ _w	Measurement
E158 SLAC	160	±0.0013	ee Completed
Q _{weak} JLAB	160	±0.0008	ep in analysis
Moller JLAB	75	±0.00027	ee approved
MESA (ep) P2	50-100?	±0.00037	ep Low Energy

Also improve: APV, DISeD, Neutrino Scattering...

Polarized <u>Moller</u> at JLAB After 12GeV Upgrade (4 x lower E & Q²) $A_{RL}(ee \rightarrow ee)$ to ±2.4% $\Delta sin^2 \theta_W(m_z)_{MS}$ =±0.00027! Comparable to Z pole studies! $A_{RL}(ee)^{exp} = A_{RL}(ee)^{SM}(1+0.25T-0.34S+7(m_z/m_{Z\chi})^2...)$ Explores $m_{Z\chi} \rightarrow 2TeV$ Better than APV, S=0.7T etc.

<u>Future JLAB Flagship Experiment!</u> Unique Opportunity

Standard for Future Proposals

EW Radiative Corrections to Moller A_{RL}(-40%) A. Czarnecki & WJM PRD(1996)

•
$$A_{RL}(ee) = \alpha (1-4\sin^2\theta_W)$$
 $\sin^2\theta_W(m_Z)_{MS} = 0.23124(6)$ or
running + 3.01(25)_{hadronic}%
 $\sin^2\theta_W(Q=0) = 0.23820(60)$

+ WWbox (+3.6%) γZbox...(-5.5%) partial cancellation
+ other small 1 loop corrections → -40(3)% reduction!
E158 ΔA_{RL}/A_{RL} =±12.5% vs Running unc. ±6%?

Erler & Ramsey-Musolf \rightarrow factor of 8.6 error reduction! +3.01(25)% \rightarrow +2.99(3)% <u>Theory ±0.6% vs Moller exp ±2.4%</u> $\Delta sin^2 \theta_W^{RC} \sim \pm 0.00007!$ Pristine Potentially another factor of 2 reduction via lattice

1 loop contributions to $sin^2\theta_w(Q^2)$ running

Fig. 2. $\gamma - Z$ mixing diagrams and W-loop contribution to the anapole moment.

Box Diagrams (tend to cancel) \rightarrow very small 2 loop uncertainty ($\Delta A_{RL}/A_{RL} \sim \pm 0.3\%$)

14

<u>Z' Boson Sensitivity (extra U(1)' gauge symmetry</u>

Conesquences of $A_{RL}(ee \rightarrow ee)$ to ±2.4% $\Delta sin^2 \theta_W(m_z)_{MS} = \pm 0.00027!$ $A_{RL}(ee)^{exp} = A_{RL}(ee)^{SM}(1+0.25T-0.34S+7(m_z/m_{Z\chi})^2 ...$ $+0.7R(0) + SUSY + H^{--}...)$ Z pole $sin^2 \theta_W(m_z)_{MS} \rightarrow 0.25T-0.34S$ very small. <u>Is it?</u>

SM agreement significantly constrains BSM **Deviation Implies New Physics (Many Z' Examples) Complements LHC Z' Direct Discovery 1-8TeV** (LHC Requires relatively large Z' production & I⁺I⁻ BR) (Potentially) Watered down by BSM decay modes

Examples

 $U(1)_{\chi}$, $U(1)_{\psi}$ of E_6 GUT (Mix) \leq 2TeV sensitivity Much Stronger coupling \rightarrow Better Sensitivity \rightarrow O(8TeV)

 $U(1)_{B-L}$, $U(1)_{Le-L\mu}$, $U(1)_{SUSY}$... Many Heavy Z' Examples

LHC Sensitivity may be diluted by reduced I⁺I⁻ BRs

Light Z' bosons with very weak SM couplings ~ 10⁻³-10⁻⁶g I will illustrate **dark Z** model of (DAVOUDIASL, LEE, MARCIANO) GENERALIZATION OF DARK PHOTON MODEL

The Dark Boson – A Portal to Dark Matter

 What if some U(1)_d gauge symmetry from the Dark or some Other Sector contains a "Light" *Dark Photon, U Boson, Hidden Boson... Dark Z (Z_d)*

Introduced for: 1) Sommerfeld Enhancement D+D \rightarrow Z_d+Z_d

- 2) $Z_d \rightarrow e^+e^-$ (source of positrons, γ -rays)
- 3) Cosmic Dark Matter Stability via global U(1)_d
- ^{*}4) Light Dark Matter Abundance
- *5) <u>Muon Anomalous Magnetic Moment</u>

Can we find direct evidence for such a light boson in the laboratory?

Dark Photon & Dark Z

Interacts with our particle world via

1) Kinetic Mixing U(1)_YxU(1)_d $\epsilon eZ_d^{\mu}J_{\mu}^{em}$ $\epsilon \approx \alpha/\pi \approx 2x10^{-3}$ $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 288(80)x10^{-11} (\underline{3.6\sigma \, discrepancy!})$ $\approx \frac{1}{4}(\alpha/\pi)\epsilon^2 m_{Zd}\approx 20-300 MeV \text{ (see figure)}$

2) Z-Z_d Mass Mixing: $\varepsilon_Z g/2\cos\theta_W Z_d^{\mu} J_{\mu}^{NC} \varepsilon_Z = m_{Zd}/m_Z \delta \delta \approx \underline{10}^{-3} (\sim v_1^{-2}/v_2 v_s)$ Induced by extended Higgs (2 doublets + sing.) Portal Rare Higgs $\rightarrow ZZ_d$, $K \rightarrow \pi Z_d \& B \rightarrow KZ_d$ decays $\sim \delta^2$, <u>Dark Parity Violation (probes $\delta \approx 2x \underline{10}^{-3} \varepsilon \approx 2x \underline{10}^{-3}$)</u> (DAVOUDIASL, LEE, MARCIANO) Enhanced Phenomenology

3) Small direct coupling eg. U(1)_{Le-Lµ} ~ few x10⁻³e

Example

One Loop gamma- γ_d Kinetic Mixing $\epsilon F_{\mu\nu}D^{\mu\nu}$ (eg Through Heavy Charged Leptons) That also carry U(1)_d charge Expect $\epsilon \sim eg_d QQ_d/8\pi^2 \leq O(10^{-3})$

Muon Anomalous Magnetic Moment

 $a_{\mu}^{Zd} = \alpha/2\pi\epsilon^{2}F(m_{Zd}/m_{\mu}), F(0)=1$ solves $(g_{\mu}-2)/2$ discrepancy $\approx 288(80)\times10^{-11}$ for $\epsilon^{2} \approx 10^{-6}-10^{-4}$ & $m_{Zd} \approx 10-300$ (see figure)

20

Lepton Magnetic Moment Constraints on the Dark Photon Green Band Corresponds to $a_{\mu}^{exp}-a_{\mu}^{SM}=288(63)(49)x10^{-11} 90\%$ CL g_e -2 Constraint DAVOUDIASL, LEE, MARCIANO $a_e(exp) - a_e(theory) = -1.05 (0.81) \times 10^{-12} \text{ wrong sign!}$

Dark Photon/Z Muon g-2 Solution (Currently)

Recent direct searches for $Z_d \rightarrow e+e-$ Significantly constrain Muon g-2 solution To $m_{Zd} \sim 20-36$ MeV (eg Recent Phenix paper), BaBar

Response: Now we know where it is!

Or make BR($Z_d \rightarrow e+e-$) <<1

Introduce very light dark particle decays $Z_d \rightarrow$ missing energy

K→ π^+Z_d Constraints for BR(Z_d →dark matter)~1 m_{Zd} =100, 200MeV ruled out? $\varepsilon - \varepsilon_Z$ Interference? H. DAVOUDIASL, H-S LEE, W. MARCIANO

Dark Parity Violation H. DAVOUDIASL, H-S LEE, W. MARCIANO

Effect of $\varepsilon \& \varepsilon_z$ together: (at low Q²<<m₂²)

 $\Delta sin^2 \theta_W(Q^2) = -0.42ε \delta m_Z m_{Zd} / (Q^2 + m_{Zd}^2)$ For δ≈m_{Zd}/m_Z, $\Delta sin^2 \theta_W(Q^2) = \pm 0.42ε m_{Zd}^2 / (Q^2 + m_{Zd}^2)$ Shift largest at small Q²<m_{Zd}² (≈O(1%)! Eg APV)

<u>(1.5 sigma APV deviation) fit</u> $\rightarrow \varepsilon \delta = 4 \times 10^{-6}$ or $\varepsilon \approx \delta \approx 2 \times 10^{-3}$ for $(g_{\mu} - 2) \& APV \rightarrow m_{Zd} \approx 50 MeV$ region $\sin^2 \theta_W (Q \approx 75 MeV)$ shift by $\pm O(0.5 - 1\%)!!$ $\varepsilon \delta$ down to $\approx 10^{-6}$ Potentially Observable A_{RL} (ee) at low Q² very Important <u>Dark Z Effect on electron scattering</u> Photon-Z Mixing through Z_d from H-S Lee

Effect of "Light" Z_d on Running H. DAVOUDIASL, H-S LEE, W. MARCIANO

<u>Potential 300MeV Dark Z Effects on Running</u> **0**<|**sin²θ_w(0)**|**<0.002 Start to show up in Qweak**

a_e & Polarized e⁻ Parity Violation Sensitivity (Old slide pre experimental updates)

Motivation for Moller

Very Clean, Precise, $\sin^2\theta_W(Q^2)$ Experiment at Q=75MeV Factor 4 lower Q² relative to E158 actually improves theory! Goal $\Delta \sin^2\theta_W(m_z)_{MS}$ =±0.00027! (Z pole competitive) Unique hadronic $\Delta \sin^2\theta_W^{RC}$ ~±0.00007! Pristine SM Theory <u>No Interpretation Ambiguity!</u>

Competitive & Complementary to Z pole & LHC measurements Best low Q² opportunity for at least 10 years "New Physics" egs. Heavy(>1TeV) or Light (<10GeV) Z' Potential 5 sigma Discovery JLAB Flagship - Must Do Experiment <u>Challenges Advance Physics (eg APV)</u>