Measurement of Lepton-Lepton Electroweak Reaction MOLLER

Introduction

Agenda Overview & MOLLER Goals

Krishna Kumar

Stony Brook U.

DOE Nuclear Physics MOLLER Science Review, UMass, Amherst, September 10, 2014

ENERGY

Comments on the Agenda Introduction to Møller Scattering SLAC E158 Result Introduction to MOLLER ★ Precision and Accuracy Goals ★ The Collaboration

Thanks

Thanks to the panel members for taking the time and agreeing to participate in this review

Thanks to the DOE Office of Nuclear Physics for scheduling this review and providing the opportunity to present the physics case for MOLLER

Thanks to Michael Ramsey-Musolf and the Amherst Center for Fundamental Interactions (ACFI) for hosting this review at UMass, Amherst

Talk Titles and Speakers

Parity-Violating Møller Scattering: Global Context (45): Michael Ramsey-Musolf

- Weak Mixing Angle, Radiative Corrections and New Vector Bosons (45): Bill Marciano
- Experimental Context and Overview of Technique (45): Krishna Kumar
- Overview of MOLLER Subsystems (45): Mark Pitt
- Statistics, Systematics and Run Phases (30): Kent Paschke

Impact on JLab Science Program (20): Cynthia Keppel

Flow of Talks

Morning Talks:

- ★ M. Ramsey-Musolf: Context for ultra-precise low Q² measurements
- ★ W. Marciano: robust theoretical prediction and unique discovery reach of low Q² weak neutral current measurements

Afternoon Talks:

- ★ K. Kumar: Phenomenological perspective and experimental technique overview
- ★ M. Pitt: Description of Main MOLLER Subsystems
- ★ K. Paschke: Systematic Control and Progressive Run Phases
- ★ C. Keppel: The JLab Hall A Program Science Impact

Charge Elements

Scientific Significance

- ★ Morning talks + first part of K.Kumar talk
- Impact on Advancement of Nuclear Physics
 - ★ Morning talks + K.Kumar talk

Research Effort Needed

★ W. Marciano talk (theory), K.Kumar and JLab talks (experiment)

- Feasibility and First Three Year Impact
 - * Afternoon talks, especially K. Paschke talk
- Impact of Implementation on JLab Program
 - * Afternoon talk by C. Keppel

The Standard Model Prediction: Remarkably Well-Known Radiative Corrections

$$A_{PV} = \frac{\rho G_F Q^2}{\sqrt{2}\pi\alpha} \frac{1-y}{1+y^4+(1-y)^4} \left\{ 1 - 4\kappa(0) \sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} + \frac{\alpha(m_Z)}{4\pi\hat{s}^2} - \frac{3\alpha(m_Z)}{32\pi\hat{s}^2\hat{c}^2} (1-4\hat{s}^2)[1+(1-4\hat{s}^2)^2] + F_1(y,Q^2) + F_2(y,Q^2) \right\}$$

 $\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} = \mathbf{1} - 4\sin^2 heta_{\mathbf{W}} \sim \mathbf{0.075} \Longrightarrow \mathbf{0.045}$

The small size of the coupling, further reduced by radiative corrections, will be a recurring theme: it eases the pressure on "normalization" errors

The Standard Model Prediction: Remarkably Well-Known Radiative Corrections $A_{PV} = \frac{\rho G_F Q^2}{\sqrt{2\pi\alpha}} \frac{1-y}{1+y^4 + (1-y)^4} \{1 - 4\kappa(0)\sin^2\theta_W(m_Z)_{\overline{\text{MS}}}\}$ + $\frac{\alpha(m_Z)}{4\pi\hat{s}^2} - \frac{3\alpha(m_Z)}{32\pi\hat{s}^2\hat{c}^2}(1-4\hat{s}^2)[1+(1-4\hat{s}^2)^2]$ + $F_1(y,Q^2) + F_2(y,Q^2)$ Czarnecki and Marciano (1995) $\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}} = \mathbf{1} - 4\sin^2 \theta_{\mathbf{W}} \sim \mathbf{0.075} \Longrightarrow \mathbf{0.045}$ The small size of the coupling, further reduced by radiative corrections, will be a recurring theme: it eases the pressure

on "normalization" errors

Krishna Kumar, September 10 2014

E158 Physics Implications 2003

Unique discovery space probed: Complementary to Colliders Limits on "New" Physics

 A_{PV} = (-131 ± 14 ± 10) x 10⁻⁹ Tree-level prediction: ~ -270 ppb

Introduction to MOLLER

E158 Physics Implications 2003

Unique discovery space probed: Complementary to Colliders Limits on "New" Physics

 A_{PV} = (-131 ± 14 ± 10) x 10⁻⁹ Tree-level prediction: ~ -270 ppb SM with all corrections: -154 ppb

Introduction to MOLLER

E158 Physics Implications 2003

Unique discovery space probed: Complementary to Colliders Limits on "New" Physics

Projected Uncertainty

MOLLER Collaboration

~120 Collaborators, 30 institutions, 6 countries

Expertise from several generations of successful parity experiments

Spokesperson: K. Kumar, Stony Brook U.

Executive Board Chair and Deputy Spokesperson: M. Pitt, Virginia Tech

Other Executive Board Members

Dave Armstrong (William and Mary) Javier Gomez (JLab) Cynthia Keppel (JLab) Frank Maas (U. Mainz) Juliette Mammei (U. Manitoba) Kent Paschke (U. Virginia) Paul Souder (Syracuse U.)

MOLLER Subsystem Leaders

Polarized Source: G. Cates (U. Virginia) Beam Instrumentation: M. Pitt (Virginia Tech) Hydrogen Target: S. Covrig (JLab) Spectrometer: J. Mammei (Manitoba) Integrating Detectors: M. Gericke (Manitoba) Tracking Detectors, D. Armstrong (William and Mary) Polarimetry: K. Paschke (U. Virginia) Electronics/DAQ: R. Michaels (JLab) and P. King (Ohio) Simulations: S. Riordan (UMass) and D. McNulty (Idaho State)

If/when MOLLER is ready to move forward as a funded project, the governance structure will be appropriately expanded.

Collaborators Present at Review D. Armstrong (College of William and Mary) ♦ G. Cates (U. Virginia) M. Gericke (U. Manitoba) **E.** Ihloff (MIT) **K. Kumar (Stony Brook) K. Paschke (U. Virginia)** M. Pitt (Virginia Tech) **S. Riordan (UMass)** P. Souder (Syracuse U.) Krishna Kumar, September 10 20 Introduction to MOLLER