Update on SIDIS Gas CherenkovS

S. Malace, H. Gao et al.

 \rightarrow Recent field measurements on H8500C-03

SoLID Meeting, March 2 2012

Field Measurements since the Feb. 3-4 SoLID Collaboration Meeting

 \rightarrow Recent field measurements on H8500C-03

I have shown at the last collaboration meeting field measurements from scope readings

Now I'll show more accurate field measurements from ADC data

Photon Detector: H8500C-03

Why this one over other PMTs?

- \rightarrow Field resistant
- \rightarrow Suitable for tiling

Parameter		H8500C	H850	00D	H8500C-03		H8500D-03	
Spectral Response		300 to 650			185	185 to 650		
Peak Wavelength		400						
Photocathode Material		Bial			(ali			
Window	Material	Borosilicat	e glass			UV	glass	
	Thickness	15						
Dynode	Structure	Metal channel dynode						
	Number of Stages	12						
Number of Anode Pixels		64 (8 × 8 matrix)						
Pixel Size / Pitch at Center		5.8 × 5.8 / 6.08						
Effective Area				49 ×	49			
Dimensional Outline ($W \times H \times D$)				52×52	× 27.4			
Packing Density (Effective Area / External Size)		89						

H8500C-03: Output

H8500C-03: Magnetic Field Response

→ Data from Hamamatsu (PMT unshielded)

Magnetic Field [mT]

Power supply <

dark box inside the magnet

Magnetic field probe in position for field measurement

ADC

Most difficult to shield

Most interesting feature to me: saturation of relative output with B_z

If the decrease in relative output is due to loss of gain (i.e. loss of secondary electrons on the dynode chain) it could be corrected with amplification and little shielding would be necessary

1200

1000

800

600

400

200

Not the case with B_x

Preliminary

To answer that question: **field impact on the SPE signal**; working on a fit to de-convolute background/signal

But it appears that there's little impact on SPE from a B_z field (need quantitative answer)

