Force calculations on Opera models of SolID magnet system

Jay Benesch 31 October 2016

PCDR model, rerendered

13/Oct/2016 11:33:37

Longitudinal net force on coils calculated to be 396 kN. Axial load cells allow 196 kN maximum. Factor of three to four reduction needed. Also, Hall A Engineering reports the downstream coil collar will collapse under weight of octagons - it needs to be thicker in Z.

SIDIS angles: 2, 8, 14.7 and 24 degrees from (0,0,-350)

	Magn Flux Density	gauss		
	Magnetic Field	oersted		
	Magn Scalar Pot	oersted cm		
	Current Density	A/cm ²		
	Power	W		
	Force	N		
	MODEL DATA			
	solid_r20a.op3			
	Magnetostatic (TOSCA)			
	Nonlinear materials			
	Simulation No 1 of 1			
	23979099 elements			
	25707022 nodes			
	3 conductors			
	Nodally interpolated fields			
	Activated in global coordinates			
	8-fold rotational symmetry			

cm

UNITS Length

Field Point Local Coordinates Local = Global

Opera

PVDIS angles: 3.5, 22 and 35 degrees from (0,0,10).

UNITS						
Length	cm					
Magn Flux Density	gauss					
Magnetic Field	oersted					
Magn Scalar Pot	oersted cm					
Current Density	A/cm ²					
Power	W					
Force	N					
Magnetostatic (TO	SCA)					
Nonlinear materials						
Simulation No 1 of 1						
23979099 elements	5					
25707022 nodes						

Nonlinear materials Simulation No 1 of 1 23979099 elements 25707022 nodes 3 conductors Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

Field Point Local Coordinates Local = Global

Current baseline

UNITS Length

Power

Force

Magnetic Field

Magn Scalar Pot

Current Density

MODEL DATA

cm

oersted

A/cm²

w

N

oersted cm

Magn Flux Density gauss

solid_r20f_66cm_chamf.op3

Magnetostatic (TOSCA) Nonlinear materials

Nodally interpolated fields Activated in global coordinates 8-fold rotational symmetry

Field Point Local Coordinates

Simulation No 1 of 1

23562323 elements 25388102 nodes

3 conductors

Local = Global

Upstream plug is 26" with 24 degree conical hole. Downstream coil collar is 14" thick. Net force on coil 23 kN vs 196 kN allowable.

Bz fields in octagonal barrel, along axis (top) and YZ plane, bottom.

Title

Bmod in vicinity of SIDIS target

0-100 G vertical scale, -400 to -300 cm horizontal scale.

Forces and torques on steel parts, model with octagonal symmetry

segment	Z force (N)	Z torque (N-cm) about (0,0,0)	
cone	-2.29E6	6.89E4	
endcap endplate	-1.46E6	1.53E4	
endcap cylinder	-2.11E5	-80	
downstream coil collar	-9.49E5	-1.97E5	
cotagons and endcap interface	2.13E6	-3.45E4	
upstream coil collar	6.7E5	1.88E5	
upstream plug	2.18E6	7.0E3	

Z force coil 1	2.71E6 N
Z force coil 2	6.25E4 N
Z force coil 3	-2.8E6 N
Total force on coils	-2.34E4 N

Differences between model with symmetric steel and model with cut-out for service turret

symmetric - turret	Х	Y	Z
coil 1 force (N)	-1231	2253	272
coil 1 torque (N-cm)	369044	152246	0
coil 2 force (N)	-559	89	-81
coil 2 torque (N-cm)	71317	18862	0
coil 3 force (N)	-1556	1214	23
coil 3 torque (N-cm)	-141055	-205647	0
all coil force (N)	-3346	3555	214
all coil torque (N-cm)	299306	-34539	0

Further work

A long document detailing the path my analysis has taken will be sent to SolID email list later this week. This will include results similar to slide 9 from models with twice the number of elements. These completed calculation Sunday. These have 29M elements and occupied 29 GB each. Since I have 64 GB RAM, I can double number of elements only once more. A box with 128 GB of 50% faster RAM costs \$5300.