100-

NEUTRON BACKGROUND RADIATION IN SOLID

Lorenzo Zana

Syracuse University

October 9 2012

Power flux from Beam and Target

• In order to activate a material a power deposition of $\sim 10 W/cm^2$ is needed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Power flux from Beam and Target

- In order to activate a material a power deposition of $\sim 10 W/cm^2$ is needed.
- To evaluate this I plotted The power flux per cm^2 as a function of the polar angle and normalized for a sphere of 1m (for $50\mu A$ current)

Power flux from Beam and Target

- In order to activate a material a power deposition of $\sim 10 W/cm^2$ is needed.
- To evaluate this I plotted The power flux per cm^2 as a function of the polar angle and normalized for a sphere of 1m (for $50\mu A$ current)

• At 50cm the power will be 4 times more; At 2m will be 4 times less

Power flux from Beam and Target

- In order to activate a material a power deposition of $\sim 10 W/cm^2$ is needed.
- To evaluate this I plotted The power flux per cm^2 as a function of the polar angle and normalized for a sphere of 1m (for $50\mu A$ current)

• At 50cm the power will be 4 times more; At 2m will be 4 times less

Power flux from Beam and Target

Power flux from Beam and Target

Activation

Power flux on first baffle

Power flux from Beam and Target

Inside SoLID

- No hot spots for activation
- ToDo study of SIDIS config

Outside SoLID

Possible Hotspot for activation on beampipe downstream

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Some collimation could be studied to take care of it.