Hall A 12 GeV Compton Polarimeter

Sirish Nanda Jefferson Laboratory

SoLID Collaboration Meeting January 28, 2011

Thomas Jefferson National Accelerator Facility

S. Nanda, January 28, 2011 1

Hall A "12 GeV" Upgrades

Upgrade beam-line instrumentation to measure beam polarization and energy up to 11 GeV

System	Present "6 GeV" Capability	11 GeV Requirements
Møller Polarimeter	± 3% ¹	± 3%
Compton Polarimeter	± 3% ¹	± 3%
ARC Energy Measurement System	± 2 x 10 ⁻⁴	± 5 x 10 ⁻⁴

¹With ongoing improvements of 6 GeV capability, driven by the parity program, expect to achieve \pm 1%

Compton Polarimetry

- Non-Intrusive measurement
- Accuracy improves with higher beam and photon energies
 - Figure-of-Merit ~ $\sigma x A^2 ~ k^2 x E^2$

Hall A Compton Polarimeter

Provide precise electron beam polarimetry from 1 to 11 GeV. Hall A Parity violating experiments (PReX, MOLLER, SoLID...) are primary beneficiaries

High Power Green Fabry-Perot Cavity

Twice the Analyzing power of IR cavity **Increased Figure-of-Merit** - Counting and integrating capabilities

12 GeV Design

Present Magnetic Chicane

- Four dipole design with 300 mm displacement
- 1.5Tm dipoles will go to 8 GeV

Design choices

- Keep present 300 mm geometry, and overall length
 - => Higher strength dipoles => \$\$\$
- Reduce displacement to 218 mm
 - Keep present dipoles
 - New beamline geometry => \$\$

Decision to go with 218 mm chicane adopted in 2005

Hall A 12GeV Beamline Optics

Thu Oct 01 13:25:04 2009 OptiM - MAIN: - O:\optim\jfbwork\myopt\New_baseline\hallA\halla_5_11gev_22cmComp

Compton Optical setup

Fabry-Perot Cavity

Design

- Intra-cavity power 3 kW
- Wavelength 532 nm
- Mode CW/ TEM₀₀

Solution

 Nd:Yag seed laser + Ytterbium Fiber Amplifier + PPLN Second Harmonic Generator

-> High Finesse FP Cavity

• Pound-Drever-Hall cavity lock electronics

Achievement

- Successfully acquired lock at > 5 kW in test bench Oct-Nov '09
- Core technology on hand to build high gain FP cavities!

Cavity in ARC Compton Lab

Photograh: Alan Gavalya

Thomas Jefferson National Accelerator Facility

S. Nanda, January 28, 2011 10

• Goal

- Stand-alone Asymmetry measurement with improved tracking resolution
- Provide absolute energy calibration for photon detector

• Scope

- 768 ch 240 μ m pitch silicon μ strips
- 4 Planes, 192 strips/plane, 1 cm spacing between planes
- 120 mm Vertical motion to allow coverage of Compton edge from 0.8-11 GeV

Thomas Jefferson National Accelerator Facility

S. Nanda, January 28, 2011 11

Compton Electron Spectrum

• First Compton Scattered electron spectrum obtained in the new silicon microstrip e-detector in April 2009

- Singles spectrum with 3GeV electron beam
- However, detector plagued with low efficiency
- Being sent back to Clermont-Ferrand for troubleshooting

- Calorimeter
 - Single crystal GSO, $6\phi x15$ cm cylinder supplied by Hitachi Chemicals
 - High light output, fast decay time (less than 60 ns)
 - Triggered counting as well as continuous integration.
 - Performance of the GSO calorimeter has been outstanding!

GSO Calorimeter Performance

• First photon Spectrum and Asymmetry with counting DAQ obtained October 2008

- E_e = 5.9 GeV
- $E_{\gamma} = 0.2 0.8 \text{ GeV}$
- P_{cav} = 450 W@1064 nm

Schedule

- Design:
 - Completed 2010
- Fabrication:
 - Begins Fall 2011
- Installation:
 - During 12MSD (May 2012 Apr 2013)
- **Project completion:**
 - October 2013 deliver 3-pass >6 GeV beam to Hall A. Compton Polarimeter ready to take beam in the chicane with 3-pass ≥ 6 GeV beam, ≥ 2 nA

"12 GeV Compton" Issues

The 11 GeV beam will produce more background in the Compton detectors from increased beam halo as well as higher levels of synchrotron radiation

Simulation

- Accurate simulation model to estimate and mitigate backgrounds is highly desirable. Volunteers?
- Synchrotron radiation shielding to be designed and implemented

Crossing angle

- The present 24 mr crossing angle between electrons and photons results in an e-beam aperture that is tight at 10 mm
- "Unacceptable Compton tune" is often blamed on this tight aperture.
- Increasing crossing angle to 36 mr (20 mm aperture) should be investigated. The hit on polarimetry figure-of-merit is small.
- Requires major changes to cavity and optics –
- Beyond the present 12 GeV upgrade WBS scope.

Present FP Cavity aperture

Increasing the present 10mm horizontal aperture to 20mm is desirable!

More Issues...

Photon power

- Higher photon power (~10kW) will be necessary to maintain acceptable S/N.
- 5kW cavity power at 532nm has been demonstrated, more development is necessary to boost it further
- 10-20kW in the IR (1064nm) is easier to achieve than in green. At High beam energies, IR has plenty of figure-of-merit.
- Dual band optics to afford 1064/532 nm photons on demand desirable

High rate DAQ

- With 10kW photon power, Compton counting rate with 100 uA beam is about 1MHz
- High speed detectors and DAQ are needed for counting method

Conclusion

• The 12 GeV upgrade of the Compton polarimeter builds on the success of the 6 GeV green upgrade.

• On track for 2013 Completion to provide 3% polarimetry

