GEM chambers for SoLID Nilanga Liyanage

University of Virginia

SoLID Spectrometer

Main Challenge: large area

- COMPASS GEM chambers only 30 cm x 30 cm; there were total 22 chambers, total area ~ 2 m².
- Requirements for SOLID more than an order of magnitude larger.

Plane	Z (cm)	R _I (cm)	R _O (cm)	Total Area (m²)	circumfe Inner	rence (cm) outer
4	120	39.0	87.2	1.9	245	548
5	150	48.7	109.0	3.0	306	684
6	190	61.7	138.0	4.8	388	867
7	290	94.2	210.7	11.2	592	1323
8	310	100.7	225.2	12.7	633	1414
total:				33.6		

This is the bare minimum: high rates may require multiple chambers at the same location.

• Disk area larger than available GEM foil size (currently $\sim 45 \times 45 \text{ cm}^2$); need larger foil and segmentation.

• Large total area: most current GEM foil production at CERN shop: can they handle this volume ? Need new foil manufacturing

Production at CERN

GEM size

- With existing equipments 1.5m x 0.5m active area
- Mid 2011: 2m x 0.5m active area

Volumes

- With existing equipment: 10 GEMs/month.technician
 We can hire one more technician
- Mid 2011: 24GEMs/month.technician (240GEM/year)
- With some offers for large volume production we start to see the limit price of the GEMs : in the range of 600 CHF/sqr.meter

Major recent development at CERN PCB shop towards large GEM foils

- Base material only ~ 45 cm wide roll.
- Used a double mask technique for etching: hard to the two masks accurately: Max area limited to ~ 45 cm x 45 cm previously.

Single Mask technique allows to make GEM foils as large as 200 cm \times 50 cm

Major recent development towards large GEM foils

- Splicing GEM foils together: seam is only 2 mm wide
- Performance of the rest of the GEM foil unaffected

TOTEM T1 prototype chamber made with single mask GEM foils spliced together (33 cm x 66 cm)

- Base material up to 51.4 cm wide now available
- CERN plans to buy equipment capable of producing 200 cm x 50 cm GEM foil.

This combined with Splicing: 200 cm x 100 cm GEM foil may be possible in the next two years

M. Villa, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.06.312 M. Alfonsi et al. / Nuclear Instruments and Methods in Physics Research A 617 (2010)

SBS Tracker Chambers configuration

- ✓ Modules are composed to form larger chambers with different sizes
- ✓ Electronics along the borders and behind the frame (at 90°) – cyan and blue in drawing
- Aluminum support frame around the chamber (cyan in drawing); dedicated to each chamber configuration

SBS Tracker Chambers configuration

Tracker	Area (cm²)	Number of Chambers	Readout	Pitch (mm)	Modules/ Chamber	Total Modules	Total Readout Channels
FT	40x150	6	2D	0.4	1×3	18	49000
			4(x/y)				+
			2(u/v)				13500
ST	50x200	4 + 4	2D	4×0.4	1×5	20+20	13600
+			2(x/y)				+
TT			2(u/v)				13600
CD	80x300	2	1D	1.0	2×6	24	12000
			y+y				
	1 '		'				

Total chs. 101700

Total area ~ 16.5 m²

Cost estimate ~ \$ 3.2 M

Key to Segmentation: making dead areas as narrow as possible

SBS GEM chamber prototyping

•Prototype GEM tracker consisting of five 10 cm x 10 cm chambers built.

 Already tested in high rate conditions during hall A PREX experiment. Data being analyzed now

• More extensive test with APV-25 electronics and under high background rates planed for this Autumn.

•A 40 cm x 40 cm prototype and APV-25 electronics under construction at INFN.

Topics to study

- Tracking under high rates
- Response to low energy photons
- Readout plane size limitations (noise pickup, capacitance etc.)
- Combining readout strips

Expect to start production early next year.

Jefferson lab prototype GEM chamber test during PREX experiment

- Good correlation between tracks projected from VDC and GEM tracks.
- Preliminary resolution (from residuals) ~ 60 microns.

Beam test @ DESY (EUDET support)

- Fully equiped GEM module
- 18 front-end cards
- 2304 channels
 (front end cards on the other side)
- 7 independente HV levels

2-6 GeV low intensity electron beam / silicon tracker available

Data taking: 28/Nov-3/Dec 2010

Hardware infrastructure ready for GEM testing

• A 3000 chan. APV25-S1 readout system ordered , will be ready by June: speeds are what we need for the final setup, can do tests on rate effects etc.

• A brand-new Iseg-Wiener multi-channel HV system bought; designed for sensitive detectors like Silicon strip and GEM: 16 HV channels to start with, can be expanded to 160 chan.

Important things to do now

• Construct a large area GEM chamber approaching the size of a Solid; $\sim 0.5 \times 1 \text{ m}$; study and test.

- Have the infra-structure ready for testing.
- Need to get some detector R&D money
- Optimize the readout plane: the pitch and the readout strip size.
- Identify readout electronics
 - No more APV25 chips left in the world
 - Define our needs, rate, resolution etc.
 - Look for other similar chips, and their availability.
 - Or design our own and find a manufacturer

Tracker	Strip length	Capacitance (pF)	ENC (e ⁻)
Front tracker (shortest stripes)	1 cm	$\sim 1 \ \mathrm{pF}$	$\sim 300 \text{ e}^-$
Front tracker (longest stripes)	70 cm	$\sim 20~\mathrm{pF}$	$\sim 1000 e^-$
Back trackers (4 stripes combined)	280 cm	$\sim 80~\mathrm{pF}$	$\sim 3100 e^-$
Coordinate detector (1-D readout, 4 stripes combined)	4 m	$\sim 36 \mathrm{pF}$	$\sim 1500 e^-$

• Assume largest dimension of GEM foil ~150 cm x 50 cm

Plane	Z	R _I (cm)	R _o (cm)	Total Area (m²)	inner circumfer ence	outer circumfer ence	Chamber segments
4	120	39.0	87.2	1.9	245	548	8
5	150	48.7	109.0	3.0	306	684	16
6	190	61.7	138.0	4.8	388	867	32
7	290	94.2	210.7	11.2	592	1323	32
8	310	100.7	225.2	12.7	633	1414	32
total:				33.6			120

rough cost estimate

Item	Quantity	Unit cost	Total cost	Material only unit cost	Material only total cost
GEM foil	~100 m ²	\$3000/m ²	0.3 M	\$3000/m ²	0.3 M
readout boards	120	\$ 2500	0.3 M	\$ 2500	0.3 M
chamber support frame	120	\$ 1500	0.2 M	\$ 1500	0.2 M
Supplies and tooling			0.1 M		0.1 M
FEE and DAQ	300 k	\$ 7.0	2.1 M	\$ 4.0	1.2 M
cables, power, etc			0.5 M		0.5 M
Gas system			0.1 M		0.1 M
Labor: Technicians	12 FTE-years	\$ 80 k	1.0 M	\$ 80 k	-
Labor: Grad students	6 student- years	\$ 50 k	0.3 M	\$ 50 k	-
support structure and integration			???		???
TOTAL:			~ 5 M		~ 2.7 M
With 33% contingency			~6.7 M		~3.6 M

R&D and prototyping expenses: ~ 200 k (~ 800 k year 1, ~ 140 k year 2)

PVDIS with SOLID

