SoLID Simulation Update 2

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu

June 2, 2011

- Baffle Designs and Efficiency
- Figure of Merit
- Event Generation
- Roadmap

For uniform magnetic field in *z* direction, particle motion for v = c, *p* [GeV], scattering angle θ as function of *z* is given by:

from linear r by few %

Baffle Design Considerations

- Range of x_{bj} at fixed θ defines cut
- Forbidding line of sight fixes width and spacing
- Too many baffles can have low momentum "jumping"
- Extended targets make the situation more complicated

More Baffle Design Considerations

- Too many baffles can also produce backgrounds
- Too many baffles could thin structural integrity
- Raster effects need to be included (not currently present)
- Limiting to 30 slits (Eugene's design)
- Using 6 baffle planes (Eugene's design)

	Inner Rad (cm)	Length (cm)	Field (T)
BaBar	150	345	1.5
CLEO	150	350	1.5
CDF	150	500	1.5
Zeus	86	245	1.8

- Fields produced in POISSON
- Imported into GEMC

Magnet Fields vs. z

- Fields tend to taper off at larger z
- Makes baffle design more difficult

Seamus Riordan — SoLID June 2011

SoLID Sim 2 7/27

- Start with baffle design using constant field
 - Have Eugene's baffle design for BaBar as reference
- No physics to start kill particles on baffle interaction
- Calculate propagation efficiency and FoM for different designs

To be done:

- Physics interactions
- Raster
- Optimize for field variations

BaBar Baffle Results - x vs. y

BaBar Baffle Results - Momentum efficiency

BaBar Baffle Results - Momentum efficiency

BaBar Baffle Results - x efficiency

12/27

BaBar Baffle Results - x efficiency

Some amount of photons still get through

BaBar Baffle Results - Low Momentum Blocking

- Some very low energy particles "jump" between slits
- Not a serious concern at this level?
- Vary number of slits to optimize?

Other Magnets - x eff

Zeus Baffles

Zeus requires special considerations due to difference size and field

- Can move forward for same angular coverage at expense of field integral
- Can move back for same field integral at expense of angular coverage
- Taking the second approach:
 - Maximum angle at back of target \sim 28°
 - $\bullet~$ Baffle spacing 30 $cm \rightarrow 20 cm$

- Results somewhat comparable to previous designs
- Angular coverage suffers

Figure of Merit

Figure of merit for a given magnet defined by:

- PV asymmetry
- Higher twist measurements
- Charge symmetry violation sensitivity
- d/u on LH₂

$$A_{LD_{2}} = A_{PV} \left[1 + \beta_{HT} \frac{1}{(1-x)^{3}Q^{2}} + \beta_{CSV} x^{2} \right]$$

$$A_{LH_{2}} = \eta_{\gamma Z} \left[\frac{12C_{1u} - 6C_{1d}d/u}{4 + d/u} + f(y) \frac{12C_{2u} - 6C_{2d}d/u}{4 + d/u} \right]$$

$$d/u = b + m(x-1)$$

• Calculations done assuming proposal values:

Target	Beam [GeV]	Ι [μΑ]	Time [days]	
LD_2	11.0	50.0	120	
LD_2	6.6	50.0	60	
LH_2	11.0	50.0	90	
	Seamus Riordan — S	oLID June 201	1 SoLID Sim 2	19/27

Q² vs. x

FoM Results

Magnet	А	$\beta_{\rm HT}$	β_{CSV}	$b_{d/u}$	LH ₂ high x
BaBar, Proposal	0.3%	0.0026	0.017		
BaBar, Eugene's baffles	0.18%	0.0018	0.013	2.7%	0.96%
BaBar, my baffles	0.23%	0.0022	0.018	3.4%	1.11%
CLEO, my baffles	0.23%	0.0022	0.018	3.4%	1.11%
CDF, my baffles	0.22%	0.0021	0.018	3.4%	1.11%
Zeus, my baffles	0.21%	0.0022	0.016	3.5%	1.25%

- Clearly optimization to be done
- All 4 magnets with 1st order baffle designs give similar uncertainties
- Where do differences show up?

Need more optimization!

- Better optimization on baffle design
- Turn on physics look at backgrounds produced
- Turn on raster
- Should we see more of a difference between magnets?
 - Quantitatively explore field integrals

Work in event generation

- Weights can now be propagated in GEMC
- $\bullet\,$ Added in Wiser code parameterization for π^\pm cross sections
- $\pi^0 = \pi^- + \pi^+$
- π^0 decay is done and two photons produced
- Additional EM background can be done by Geant4 EM packages

 π^{-}/e^{-} Ratio vs. p

 π^-/e^- ratio evaluated for $ext{LD}_2$, 11 $ext{GeV}$ beam

Results somewhat close to proposal

π^{-}/e^{-} Ratio vs. θ

 π^-/e^- ratio evaluated for LD₂, 11 GeV beam

Ratio somewhat flat cross θ

Work Completed:

- Software framework specified
- DIS, π , EM, and neutron backgrounds generators in hand
- Field maps for magnets in hand
- First order baffle designs
- Quantitative method for evaluation of design
- Comparison to proposal numbers underway

Work To Be Done:

- More refined baffles, baffles with physics
- More final FoM numbers for all designs
 - Numbers for SIDIS are crucial as well
 - Need to integrate in SIDIS event generator
- Full detector inclusion/digitization
 - SBB GEM responses
 - Cherenkov
 - Calorimeter
- Tracking
 - Need wish/concern/question list