Forward and Large Angle Calorimeter Update

Zhiwen Zhao, Jin Huang, Mehdi Meziane 09/21/2011

Calorimeter Options
Design Options
Simulation Update

Compare of calorimeter types

- A. Shashlik calorimeter
- B. SciFi calorimeter Pb
- C. SciFi calorimeter Fe
 - Combined with end cap

Compare option A & B

Shashlyk and SciFi-Pb

- Similarity
 - Pb-scintillator based sampling calorimeter
 - Similar in resolution and radiation hardness
 - Both fit the need of SoLID
- Choice : Shashlyk
 - Easier to read out light:
 Photon collection area 100 times smaller than SciFi
 - Matured production

Compare A & C for the forward Calo. The choice - Shashlik

Reason of choosing Shashlik over Scifi/Fe in endcup

- Shashlik is cheaper.
 - It's production module cost cheaper or similar to SciFi fiber cost alone.
- Shashlik is more mature.
 - SciFi/Fe needs R&D
- Shashlik is easier.
 - several suppliers with good experience are available.

The Challenge of Shashlik

- Field resistive readout or extend fibers to readout outside of magnet.
- Preshower/shower with separate readout
- Radiation hardness of WLS fiber and scintillator.
- WLS fiber light attenuation length

Two suppliers of Shalyik

- Both are in contact.
- 1. IHEP@Protvino for design and production
- 2. IHEP@Moscow and INR@Troizk for design and Uniplast for production

IHEP@Protvino

- 10x10cm module costs about \$1k each.
- They can make mode as large as 25x25cm.
- They can make shape other than square, like hexagon or ring-sector.
- A lot of radiation hardness measurements of scintillators and fibers are done at CERN.
- The calorimeter data from TPE experiment at CLAS is under analysis, will serve as a initial beam test for these modules.

IHEP@Moscow, INR@Troizk and Uniplast

- 10x10cm module costs about \$1k each also
- Past project: PHENIX, LHCb, HERA-b etc
- Current project: BELLE-2 etc

Compare readout options

- Large angle calorimeter
 - A. In field readout (1.5T), APD sensors
 - B. Transport photons through fiber and outside readout (Preferred)
 - Radiation resistant
 - Lower cost to use PMTs instead of expensive APD
 - Easy to maintain
- Forward calorimeter
 - A. In field readout (<~100G?), PMT
 - B. Transport photons through fiber and outside readout
 - Options still under study.
- KURARAY Y11 fibers can have longer attenuation length and good radiation hardness.
- Work in progress: clear/WLS fiber connectors

Design: Preliminary Study

Square 10*10 cm

Hexagon (same area as square)

Ring Sector

Design: Configuration Summary

	Hexagonal		Square		Sector	
	Small	Large	Small	Large	Small	Large
Size (cm)	10	10	10	10	10.5	9.95
Blocks	620	352	620	344	384	224
Molds	Min 1	Min 1	Min 1	Min 1	Min 6	Min 4
Total	972 blocks 1 molds ~ \$730.4k		964 blocks 1 molds ~ \$724.8k		608 blocks 10 molds ~ \$925.6k	

Preferred Configuration: Square

- Cheaper
- Suppliers have better experience with it
- Easier to assemble

Simulations/ Hexagon prism layout

• Preliminary studied in Geant4

Position resolution

10cm hexagon block

- Energy weighted position average:
 - (Left) black: measured position. blue: real position
 - (Right) position residual and fit

Resolution ~ that for 10cm square blocks
 – Simulation for square shown in last col. meeting

Background study

- To look for
 - The background are dominated by lower energy particles
 - Energy distribution in calorimeter very inhomogeneous
 - Radiation hardness for scintillator tiles ~200krad
- Simulated in two steps
 - 1. Generate background in GEMC, full setup
 - in progress of verification
 - 2. Simulate and tune the configuration in stand alone MC

Step 2: simulation of Energy deposition in scintillator tiles

- First layer of the Shashlyk: a 1~2 g/cm^2 Pb plate
 - Shields lower energy EM radiation
- Confirmed with simulation
 - Photon/electron < 4MeV are blocked
 - Can increase the threshold by make 1st Pb layer thicker
 - To be weighted by EM bgd from GEMC to give radiation dose

