SoLID EC Design

Xiaochao Zheng(UVa)

Mehdi Meziane (Duke), Jin Huang (LANL), Zhiwen Zhao (UVa), Paul Reimer (ANL), Nuclear Physics Group (W&M)

SoLID Jlab Physics Division Brainstorming Session 2012/01/06

OUTLINE

Requirement

Design Progress

- Choosing Shashlyk
- Our Design
- Preshower/shower
- Fiber connection
- Background Simulation
- Beam test plan

Todo List

EC Configuration

Physics Requirement

- **Electron-hadron separation**
 - 100:1 pion rejection in electron sample
 - Energy resolution: $\sigma(E)/E \approx \frac{5\%}{VE}$
- **Provide shower Position**
 - $-\sigma \sim 1$ cm, for tracking initial seed / suppress background
- Time response \bullet
 - $-\sigma <$ few hundreds ps
 - provide trigger/identify beam bunch (TOF PID)
- **Radiation resistant**
 - PVDIS forward angle
 - EM <=2k GeV/cm²/s + pion (GeV/cm²/s), total ~<60 krad/year
 - SIDIS forward angle
 - EM <=5k GeV/cm²/s + pion , total,
 - SIDIS large angle
 - EM <=20k GeV/cm²/s + pion, total,

total ~<100 krad/year

total ~<400 krad/year

Other Requirement

- The Layout need to satisfy 2-fold rotation symmetry for SIDIS.
- Modules can be easily swapped and rearranged for different configuration.
- Photonsensors located outside of magnet yoke, fiber connection is one solution.
- A reasonable cost, strongly affected by the number of modules/channels, to cover the same acceptance area, we need the module transverse size not too small.

Choosing EC Type

- PVDIS and SIDIS radiation level (400krad per year) is too high for lead glass and crystals (1krad), both Shashlyk or SPACAL/SciFi (0.5-1M rad) will work.
- Both Shashlyk and SciFi have good energy, position and time resolution.
- SciFi costs more
 - SciFi needs about half volume being scintillation fibers for good energy resolution.
 - 1mm diameter fibers cost \$1/m.
 - Forward angle EC (10m² area, 0.4m depth), Large angle EC (5m² area, 0.4m depth)
 - SciFi , total \$4M for the *fiber* alone.
 - Shashlyk , total from \$1.5M to \$2.2M for produced modules of 10x10cm from IHEP.

Choosing EC design

- Scifi/Pb standalone
 - 10M of scintillation fibers, connect
 to outside for readout by light guide.
- Shashlyk standalone
 - Mature production at IHEP@Russia
 - 150k of WLS fibers, connect to
 outside for readout by light guide
 or fiber connection.

- Scifi/Fe combined with flux return
 - Simulation shows feasibility.
 - Need significant R&D effort.

Best option: Shashlyk Calorimeter

- Shashlyk calorimeter
 - Lead-scintillator sampling calorimeter
 - WLS Fiber collects and reads out light
- Satisfy the SoLID requirement
 - Good energy resolution (tunable)
 - transverse size can be customized
 - Radiation hardness ~ 500kRad (improvable)
- Easier to collect and read out the light
- Well developed technology, used by many experiments
- IHEP production rate about 200 per month

Basics Features of Preliminary Design

- Based on COMPASS Shashlyk module.
- 0.6mm lead/1.5mm scintillator, 200 layers, 42cm in length (20 X₀)
 - Balance between longitudinal size and pion rejection
 - ~100:1 pion rejection
- 10x10cm of transverse size in square shape
 - Balance between cost and resolution/background
 - 1000 modules for forward angle EC, 500 modules for large angle EC
- Splitting : ~4 X_0 for preshower and ~16 X_0 for shower
 - Maximizing e-pi separation
 - MIP energy deposition: ~60MeV (preshower)/300 MeV (TotalShower)
- ~100 WLS fibers/module (KURARAY Y11)
 - Same fiber density (1/cm²) to sample the EM shower

Preshower/shower

- Preshower-shower separation for better electron PID
- 4 RL as preshower, 16 RL as shower

Readout option 1, separate readout

- 1. Run preshower fiber through shower part with light-protection
- 2. Run preshower fiber (separately) to outside magnetic field
- 3. Curve fiber from front, ZEUS example below
- 4. Readout preshower by photodiode, example on right.

Preshower/shower

- Readout option 2, same readout
 - •slow response scintillator for preshower and fast scintillator for shower.
 - •Use flashADC (4us) to fit line shape, could shorten the required time.
 - •Simple design and production, half number of fibers to connect, half number of channels for readout.
 - •High pion background may affect PID. SIDIS largeangle EC have low pion background

Calorimeter Design: Fibers

Fibers:

- Wave Length Shifting fibers (WLS): KURARAY Y11
- Clear Fibers: KURARAY clear PS, Super Eska...,
- * <u>Connectors</u>
 - One to one WLS/clear fiber connector, used in previous experiments (LHCb, Minos,...) light loss studies and design well documented
 - Lucite rod to couple the fibers option would reduce the cost, no information about the light loss
 - Fiber bunch diameter for one module 100 mm
 For 1500 modules, min. length of WLS: 150 km!
 Clear fiber length depends on the readout option ~500km?
 - Ongoing work: study of the fiber bundling design

Background Simulation

* The first 10 layers of scintillator have most of the radiation dose. Dominated by γ.

- Not much safety margin to radiation limit for some scintillator. Need to use radiation hard material.
- Can add a front shielding of 1~2mm lead (equivalent to 2~3 layers) to reduce the radiation in the first few layers.
- ***** GEMC background model is being improved.

Beam test TPE caloriemeter under CLAS tagger during g14 photon run

- Gain direct experience with the modules.
- Test energy, position, time resolution
- Study position resolution at different incoming angles.
- Use test results to anchor the simulation.

COMPASS modules used for TPE@CLAS

Todo List

- Beam test COMPASS modules
- Fine tuning simulation
- Prototyping module with preshower/shower and further test
- Further background study
- Fibers attenuation length and radiation hardness study
- Fiber connection study
- layout and engineering

Backup

Introduction

Calorimeters Front-

Front-End Electronics

Procedures

Summary

EM calorimeters with optical readout

	Density	<i>X</i> ₀	R _M	λ_I	Refr.	τ	Peak	Light	N _{p.e.} GeV	rad	<u>σΕ</u> F
Material	g/cm^3	ст	ст	ст	index	ns	λ nm	yield			—
Crystals											
Nal(TI)**	3.67	2.59	4.5	41.4	1.85	250	410	1.00	10 ⁶	10 ²	$1.5\%/E^{1/4}$
Csl *	4.53	1.85	3.8	36.5	1.80	30	420	0.05	10 ⁴	10 ⁴	$2.0\%/E^{1/2}$
CsI(TI)*	4.53	1.85	3.8	36.5	1.80	1200	550	0.40	10 ⁶	10 ³	$1.5\%/E^{1/2}$
BGO	7.13	1.12	2.4	22.0	2.20	300	480	0.15	10 ⁵	10 ³	$2.\%/E^{1/2}$
PbWO ₄	8.28	0.89	2.2	22.4	2.30	5/39%	420	0.013	10 ⁴	10 ⁶	$2.0\%/E^{1/2}$
						15/60%	440				
						100/01%					
LSO	7.40	1.14	2.3		1.81	40	440	0.7	10 ⁶	10 ⁶	$1.5\%/E^{1/2}$
PbF ₂	7.77	0.93	2.2		1.82	Cher	Cher	0.001	10 ³	10 ⁶	$3.5\%/E^{1/2}$
		_	_		Lea	d glass	_	_	_		
TF1	3.86	2.74	4.7		1.647	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$
SF-5	4.08	2.54	4.3	21.4	1.673	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$
SF57	5.51	1.54	2.6		1.89	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$
Sampling: lead/scintillator											
SPACAL	5.0	1.6				5	425	0.3	2 · 10 ⁴	10 ⁶	$6.0\%/E^{1/2}$
Shashlyk	5.0	1.6				5	425	0.3	10 ³	10 ⁶	$10.\%/E^{1/2}$
Shashlyk(K)	2.8	3.5	6.0			5	425	0.3	4 · 10 ⁵	10 ⁵	$3.5\%/E^{1/2}$
* - hygroscopic											

E.Chudakov

Calorimeter in Solenoid Flux Return

Open Questions:

- What does magnetic field do the shower?
 - My guess is that charged particles in the EM shower will curl up causing the shower to become shorter and wider
- How does magnetic field affect resolution in Energy and in space? Is this a strong function of field strength or direction?
- What resolution do we need? [Pb:SciFi at ~1:1 gives 4.5%/sqrt(E)]
- Is Iron dense enough?
- How does the fiber affect the Magnetic flux return?
 - My guess is that we use and "effective" μ which is about half that of Fe.
- Require detailed MC; Have contacted D. Hertzog about simulations.
- How do we cost this?
 - D Hertzog—driving cost is amount of fiber—Fe less dense than Pb thus need more fiber.

Calorimeter Design: Lead/Sci Ratio

Tuning of the ratio performed with a dedicated Geant 4 simulation.
 Can reach a pion rejection factor of 100/1 with Pb thick. = 0.6 mm /layer

Range of interest: 3~7 GeV

Compare of calorimeter types

- A. Shashlik calorimeter
- B. SciFi calorimeter Pb
- C. SciFi calorimeter Fe
 - Combined with end cap

Compare option A & B

Shashlyk and SciFi-Pb

- Similarity
 - Pb-scintillator based sampling calorimeter
 - Similar in resolution and radiation hardness
 - Both fit the need of SoLID
- Choice : Shashlyk
 - Easier to read out light:
 Photon collection area 100 times smaller than SciFi
 - Matured production

Compare A & C for the forward Calo. The choice - Shashlik

Reason of choosing Shashlik over Scifi/Fe in endcup

- Shashlik is cheaper.
 - It's production module cost cheaper or similar to SciFi fiber cost alone.
- Shashlik is more mature.
 - SciFi/Fe needs R&D
- Shashlik is easier.
 - several suppliers with good experience are available.

IHEP Scintillator Fasilities www.ihep.ru/scint/index-e.htm

ECAL Configuration

ECAL Choice

- Lead-Scintillator Sampling Calorimeter: Shashlyk Calorimeter
- Fibers collect and read out the light
- ***** Great flexibility, tunable energy resolution: ~ $6\%/\sqrt{E}$ is not a problem
- Good radiation Hardness: ~ 500 krad
- Well developed and mature technology: used previously in other experiments

ECAL Shashlik

•	Dimensions	38.2x38.2 mm ²
•	Radiation length	17.5mm
•	Moliere radius	36mm
•	Radiation thickness	22.5 X ₀
•	Scintillator thickness	1.5mm
•	Lead thickness	0.8mm
•	Radiation hardness	500 krad
•	Energy resolution	6.5%/√E 1%

1type

ECAL Design: Lateral Size

Background Simulation

- The radiation dose for scintillators is 100krad~2Mrad, material dependent.
- Doses on the fibers are similar to the doses on scintillator tiles (both are plastic based).
- Dose = (fraction energy deposition for each layer) *(energy flux)
- (energy flux) is generated by using GEMC and Babar model.
- (fraction energy deposition) is calculated using GEANT 4 simulation for each layer and different incoming particle kinematic energy.

ECAL Design: Layout

	Hex	agon	Squ	are	Sector		
	Small	Large	Small	Large	Small	Large	
Size (cm)	10	10	10	10	10.5	9.95	
Blocks	912	486	908	492	576	312	
Molds	Min 1	Min 1	Min 1	Min 1	Min 9	Min 6	
Total	1398 blocks 1 mold		1400 blocks 1 mold		888 blocks 15 molds		
	1 m ~ \$ 1	nold 4M	1 m ~ \$1	nold L.4M	15 molds ~ \$1.64M		

- Preferred Square
 - Easy assembly
 - Mature production
 - Easier rearrangement

Calorimeter Design: Fibers

♦ Fibers:

Wave Length Shifting fibers (WLS):

KURARAY Y11: - good attenuation length (3.5-4m),

- good radiation hardness : <30% loss of light output after a 693 krad irradiation.

- Recovery: few percents after 10 days
(M.J. Varanda et al. / NIM in Phys. Res. A 453 (2000) 255}258)

Clear Fibers: KURARAY clear PS, Super Eska..., options under study.

Calorimeter Design: Connectors

Option 1: One to one WLS/clear fiber connector, used in previous experiments (LHCb, Minos)

Calorimeter Design: Connectors

Option 2:

Thermal fusion: splice the WLS and clear fiber.

Giorgio Apollinari et al NIM in Phys. Research. A311 (1992) 5211-528

Option 3:

Glue the WLS fibers to a lucite disk coupled to a lucite Rod with optical grease or Si gel "cookie". Would reduce the cost significantly

Need more R&D to decide what is the best option.

https://hedberg.web.cern.ch/hedberg/home/caleido/caleido.html

PVDIS rate

Process	Geometry			
	Open	baffles		
DIS total	2500 kHz	110 kHz		
DIS $W > 2$ GeV, $X > 0.20$	$1500 \mathrm{~kHz}$	$110 \mathrm{~kHz}$		
DIS $W > 2$ GeV, $X > 0.55$	35 kHz	12 kHz		
DIS $W > 2$ GeV, $X > 0.65$	$8 \mathrm{kHz}$	$3 \mathrm{kHz}$		
$\pi^- p > 0.3 \text{ GeV}$	2300 MHz	140 MHz		
$\pi^- p > 1.0 \text{ GeV}$	$460 \mathrm{~MHz}$	$70 \mathrm{~MHz}$		
$\pi^- p > 2.0 \text{ GeV}$	$26 \mathrm{~MHz}$	8 MHz		
DIS $X > 0.20$ $E_{CALOR} > E_{thr}(R)$	680 kHz	102 kHz		
$\pi^- E_{CALOR} > E_{thr}(R)$	$540 \mathrm{~kHz}$	120 kHz		
$\pi^{-} E_{CALOR} > E_{thr}(R)$ pileup	$\sim 10 \text{ kHz}$	<2 kHz		

Table 3.3: Calculated DIS and pion rates in the spectrometer.

SIDIS rate

Process	Rate	Rate	Rate	Rate
	Forward	Large	Forward	Large
	angle 11 GeV	angle 11 GeV	angle $8.8 \ {\rm GeV}$	angle 8.8 GeV
$(e,e\pi^+)$	1467 Hz	192 Hz	810 Hz	117 Hz
$(e,e\pi^{-})$	1010 Hz	120 Hz	554 Hz	73 Hz
single e^-	88.5 kHz	11.0 kHz	151 kHz	16.5 kHz
high energy photon	623 kHz	51.5 kHz	596 kHz	37 kHz
single π^+	2.90 MHz	20.2 kHz	2.5 MHz	13.4 kHz
single π^-	1.77 MHz	14.5 kHz	1.47 MHz	9.2 kHz
single K^+	226 kHz	5.9 kHz	185 kHz	4.1 kHz
single K^-	54.6 kHz	1.2 kHz	39.9 kHz	0.6 kHz
single proton	1.15 MHz	13.8 kHz	0.99 MHz	9.4 kHz
low energy photon	200 MHz	-	200 MHz	-