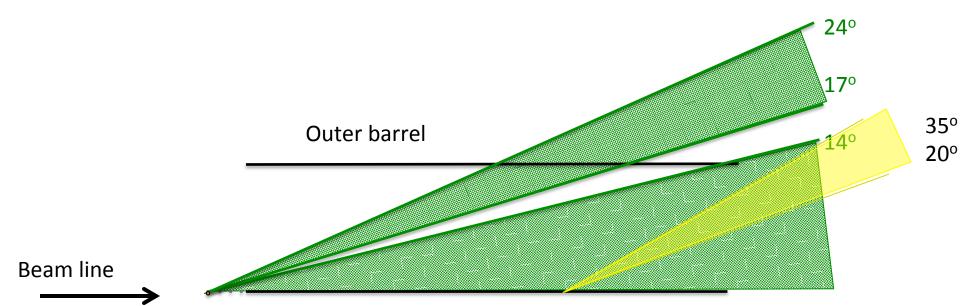


Magnet Progress

Paul E. Reimer


3 February 2012

Solenoid Size restrictions

- Or, if we were starting from scratch and designing a new magnet, what would we want?
- Back-of-the-envelope arguments

SIDIS Target (must be outside of solenoid or very well shielded)

Solenoid Size restrictions

14° line cannot hit solenoid *i.e.* radius/length > tan(14°) Barrel Calorimeter should be able to intercept 17-24° without hitting 14° line Calorimeter thickness (as seen by track) for π /e differentiation is about 40 cm Minimum barrel radius of approximately 90 cm Minimum barrel length of approximately 360 cm Outer barrel 14° Beam line

SIDIS Target (must be outside of solenoid or very well shielded)

Solenoid Size restrictions

Smaller calorimeter (either more dense or fewer rad lengths) ⇒ Smaller radius and hence shorter length ⇒ Still need angular coverage Larger barrel-forward gap ⇒ Acceptance hole ⇒ Allows for longer or deeper colorimeter Shift barrel-forward gap ⇒ Small effect for reasonable shifts Outer barrel Beam line

SIDIS Target (must be outside of solenoid or very well shielded)

Choice of Solenoid

Field:

- The Q² and x resolution requirements (from PVDIS) dictate the desired energy resolution that was found to be $\sigma_{\rm F'}/{\rm E'}$ < 3%.
- Coupling this with the tracking resolution dictate the minimum acceptable field.
- Simulations have shown that a solenoid with 1.5T central field and 6 planes of $500\mu m$ resolution tracking can meet this criteria.
- Not the only solution, but shown to work.
 - Trade off more field ⇔ less tracking resolution
- In other words, we have been looking at the correct size of solenoids regardless of cost.
- Cost of fabricating a new magnet is approx. \$8M based on Hall D

Magnet Comparison

	BaBar	CLEO	ZEUS	CDF	Glue-X	Other
Cryostat Inner Radius	150 cm	150 cm	86 cm	150 cm		need
Length	345 cm	350cm	245cm	500 cm		Je
Central Field	1.49T	1.5T	1.8T	1.47T		We
Yoke Aval?	Yes	Yes	No	No		_
Cool Icon	Yes	Yes	Yes	No		\ \ \ \ \
Variation in Current density with z?	Current Density in central 50% is ½ that in end 25%	Current Density in central 50% is 1/1.04 that in end 25%	Current density 25% more current at ends	No	Yes	Whateve
Available	Probably Not??	Probably	Probably Not??	Needs \$1M repair and possible Expt at Fermilab	Perhaps	\$8M??

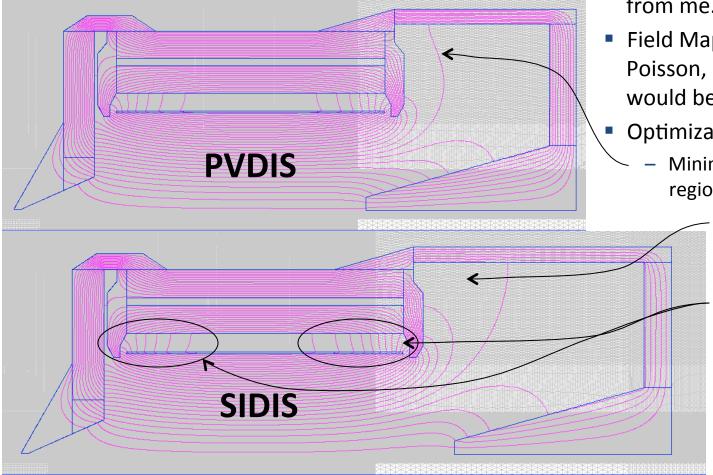
Choice of CLEO magnet

	CLEO		
Cryostat Inner Radius	150 cm		
Length	350cm		
Central Field	1.5T		
Yoke Aval?	Yes		
Cool Icon	Yes		
Variation in Current density with z?	Current Density in central 50% is 1/1.04 that in end 25%		
Available	Probably		

Obtaining the CLEO Magnet

- Magnet is owned by Cornell and not DOE or NSF
- Phone Conference between JLab and CLEO 12 January 2012
- Coil is currently "captured" by CESR
- Coil is in good condition
- Best time for move is 2014 CLEO downtime
- Estimated cost approx. \$1.0-1.5M for move of coil
 - Currently in JLab budget (I believe) but budget's are tight and subject to change

Next Steps


- Engineering for
 - Flux return (this will cost \$\$)
 - Cryo (this will cost \$\$)
- Look for possible sources of inexpensive steel

Field Map

-300

-200

100

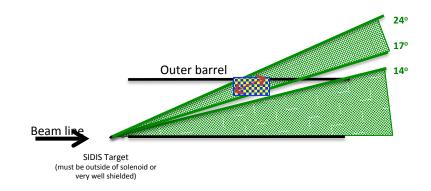
Z:\HOME\ZWZHAQ\SQLID\F1ELD\CLEQV6\CLEQV6_SIDIS.AM 1-30-2012

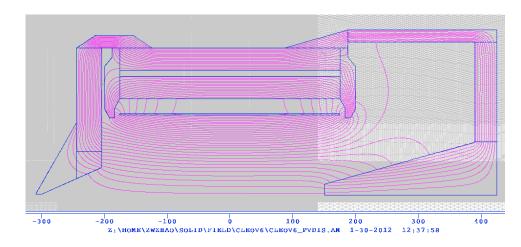
200

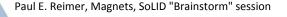
300

100

500


- Zhiwen is now working on field maps with feedback from me.
- Field Maps done in 2-D Poisson, eventually 3-D would be better.
- Optimization in progress
 - Minimize field in detector region
 - No longer need field free region for Cherenkov PMT
 - Balance forces on coil—for both configurations
 - Minimize excess iron


Paul E. Reimer, Magnets, SoLID "Brainstorm" session


-100

Conclusions

- CLEO magnet will produce the desired acceptance and resolution for both SIDIS and PVDIS
- A new coil would be similar to CLEO and cost approx. \$8M
- We have been in contact with CLEO/Cornell
 Need to start Engineering on
 - flux return
 - cryo
- Reasonable field map

