
## SoLID DAQ

Alexandre Camsonne Yi Qiang Rory Miskimen SoLID collaboration meeting February 4<sup>th</sup> 2011

# Overview

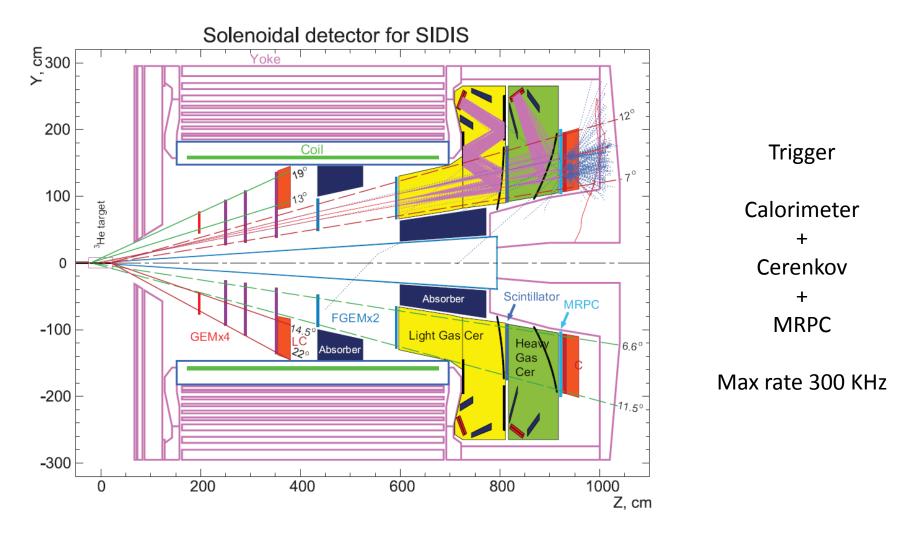
- Requirements overview
- GEM
- Electronics layout
- Budget
- Parasitic tests
- Test stand
- Conclusion

#### Detector layout and trigger for PVDIS



Calorimeter +

Trigger


Cerenkov

200 to 500 KHz of electrons

30 individual sectors

Max 17 KHz/sector

### **Detector layout and trigger for SIDIS**



# SIDIS: Single Electron Trigger

#### • Large Angle: 65 kHz @ 11 GeV

- Calorimeter only
- Electron: 11 kHz
- High energy photon: 51.5 kHz
  - (possible to be rejected by including GEM in trigger, need study)
- Hadron: <3 kHz (energy cut)</li>
- Small angle: 120 kHz @ 11 GeV
  - Calorimeter + Gas Cherenkov
  - Electron: 90 kHz
  - High energy photon: 16 kHz (after Gas Cherenkov)
  - Hadron: 15 kHz (after Gas Cherenkov and Calorimeter)
- 8.8 GeV gives about 240 kHz

# SIDIS: Hadron trigger

- Calorimeter + MRPC + Scintillator
- Hadron rate : 7.7 MHz
  - Charged hadron: 6.1 MHz (dominated)
  - Electron: 0.1 MHz
  - Photon: 1.5 MHz (after MRPC and Scintillator)
- Dominated by inclusive hadrons

### SIDIS: Coincidence @ 35 ns window

- Coincidence rate: 50 kHz
- Given the safety margin, expected to handle about 100 kHz.
  - Include some single trigger to study detector performance etc.
- 4kB \* 100 kHz ~ 400 MB/s to disk
  - Goal to reduce things to 50 MB/s by L3 farm

# SIDIS channel count

| Detector                   | Module type | Number of channels | Number of<br>FADC |
|----------------------------|-------------|--------------------|-------------------|
| Forward<br>Calorimeter     | FADC        | 1896               | 119               |
| Large angle<br>calorimeter | FADC(+TDC)  | 920                | 58                |
| Light Gas<br>Cerenkov      | FADC        | 120                | 8                 |
| Heavy Gas<br>Cerenkov      | FADC        | 270                | 17                |
| Scintillator               | FADC        | 120                | 8                 |

The FADC of LC can be programmed to produce timing signals with ~400ps resolution (already demonstrated by simulation) to remove the needs of TDC.

## APV25 readout

- Buffer length 192 samples : 4.8 us Look back 160 samples : 4 us
  - Estimated occupancy : 220 hits per trigger, X Y data, 440 strips GEM : 6 Layers 164 000 channels total, 28 000 channels per planes

#### Occupancy : 1.6 %

• APV readout time : t\_APV = 141 x number\_of\_sample / 40 MHz

#### t\_APV(1 sample) = 3.7 us.

Max rate APV front end : 270 KHz in 1 sample mode 90 KHz in 3 samples mode Will be triggered by coincidence trigger around 50 KHz

# APV25 VME readout

• 220 hits x 2 x 2 bytes / 200 Mb

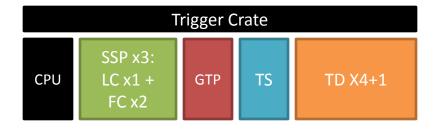
Average readout time for GEM 4.4 us / 11 crates

Readout time negligible and no dead time with buffering

More detailed simulation of APV25 and background being implemented will give confirmation in about 1 month

## Other GEM readout chips

| Name           | Ехр                                                                                                                                                                                                                                  | Det          | #ch | Shaper<br>(ns)                 | Noise                        | Range<br>(fC)  | Pol. | ADC  | f<br>(MHz)    | P/ch.<br>(mW)  | Feat.         | Tech              | Rad<br>hard |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|--------------------------------|------------------------------|----------------|------|------|---------------|----------------|---------------|-------------------|-------------|
| APV25          | CMS                                                                                                                                                                                                                                  | Si strip     | 128 | 50                             | 270+38e/pF                   | 20             | both | A    | 40            | 2.7            | PD, PR        | 0.25<br>CMOS      | 10          |
| AFTER          | Т2К                                                                                                                                                                                                                                  | TPC          | 72  |                                | (350-1800) +<br>(22-1.8)e/pF | 19             | both | A    | 1-50<br>(100) | 7.5            | VG,VS         | 0.35<br>CMOS      | no          |
| MSGCROC        | DETNI                                                                                                                                                                                                                                | Gas<br>strip | 32  | T: 25<br>E: 85                 | 2000e @<br>40pF              | 800            | both | A,1  | 2ns<br>TDC    |                | VG, ZS        | 0.35<br>CMOS      | no          |
| Beetle         | LHCb                                                                                                                                                                                                                                 |              | 128 | 25                             | 500+50e/pF                   | 17.5           | both | A/1  | 40            | 5.2            | F-OR          | 0.25<br>CMOS      | 40          |
|                |                                                                                                                                                                                                                                      |              |     |                                |                              | 10.5           |      |      |               |                |               | 0.05              |             |
| VFAT           | TOTEM                                                                                                                                                                                                                                |              | 128 | 22                             | 650+50e/pF                   | 18.5<br>(cal)  | both | 1    | 40            | 4.47           | F-OR          | 0.25<br>CMOS      | 50          |
| NINO           | ALICE                                                                                                                                                                                                                                | TPC          | 8   | 1                              | 1900+165/pF                  | 2000<br>th<100 | both | 1    | async         | 30             | BR            | 0.25<br>CMOS      | no          |
| CARIOCA        | LHCb                                                                                                                                                                                                                                 | MWPC         | 8   | <15 @<br>220pF                 | 2000+40e/pF                  | 250            | both | 1    | async         | 46             | BR            | 0.25<br>CMOS      | 20          |
| PASA+<br>ALTRO | ALICE<br>TPC                                                                                                                                                                                                                         | TPC          | 16  | 190 <sub>fwhm</sub><br>s-gauss | 570e @20 pF                  | 160            | both | 10   | 20            | < 40           | BC, TC,<br>ZS | 0.35,0.25<br>CMOS |             |
| SVX4           | CDF,<br>D0                                                                                                                                                                                                                           | Si strip     | 128 | 100-360                        | 410+45e/pF                   | 60fC           | neg  | 8    | 106<br>(212)  | 2              | ZS            | 0.25<br>CMOS      | 20          |
| SPIROC         | ILC,<br>T2K                                                                                                                                                                                                                          | SiPM         | 36  | A:25-175<br>T: 10              | A: 1/11pe;<br>T:1/24pe       | 2000<br>pe     | neg  | 8-12 | 100ps<br>TDC  | 0.025<br>pulse |               | 0.35 <u>SiGe</u>  | no          |
| Legend:        | Legend: PD = peak detection, PR = pile-up rejection, VG = variable gain, VS = variable shaping, F-OR = fast-OR, BR = baseline restorer, BC = baseline correction, TC = tail correction, DC = data compression, ZS = zero suppression |              |     |                                |                              |                |      |      |               |                |               |                   |             |


# GEM in trigger

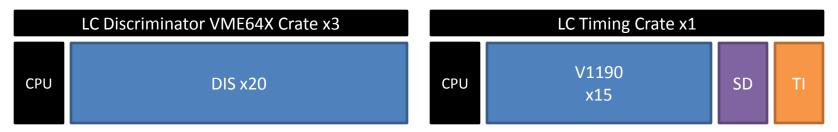
• Use signal of 5<sup>th</sup> GEM plane for fast trigger

• Quality of signal to be tested

- Could reduce rate in Large Angle from photon calorimeter by 50 KHz
- Additional FADC channels to put in trigger

#### DAQ/Trigger for SoLID SIDIS




| LC Trigger Crate x4 |          |     |    |    |  |  |
|---------------------|----------|-----|----|----|--|--|
| CPU                 | FADC x15 | СТР | SD | TI |  |  |

| Total Crate + CPU: 31+4 |               |  |  |  |  |  |  |
|-------------------------|---------------|--|--|--|--|--|--|
| FADC: 210               | TI: 30+1      |  |  |  |  |  |  |
| DIS: 0+60               | <b>SSP: 3</b> |  |  |  |  |  |  |
| F1TDC: 0+30             | GTP: 1        |  |  |  |  |  |  |
| CTP: 19                 | TS: 1         |  |  |  |  |  |  |
| SD: 30+1                | TD: 4+1       |  |  |  |  |  |  |

| FC/GC/HG/SC/MRPC Crate x15 |                                     |           |     |    |    |  |  |
|----------------------------|-------------------------------------|-----------|-----|----|----|--|--|
| CPU                        | FADC X10:<br>GC x8 +<br>GC/HG/SC x2 | MRPC<br>? | СТР | SD | TI |  |  |

| GEM Tracker Crate x11 |            |    |    |  |  |  |
|-----------------------|------------|----|----|--|--|--|
| CPU                   | APV25 X 16 | SD | ТІ |  |  |  |

+?



## **SIDIS** electronics

| Module         | Unite price | Quantity        |             |
|----------------|-------------|-----------------|-------------|
| FADC 250       | 4500        | 210             | \$945,000   |
| СТР            | 5000        | 19              | \$95,000    |
| SSP            | 5000        | 3               | \$15,000    |
| GTP            | 5000        | 1               | \$5,000     |
| VXS crate      | 11500       | 1               | \$11,500    |
| TS             | 3500        | 1               | \$3,500     |
| TI             | 3000        | 30              | \$90,000    |
| TD             | 3000        | 4               | \$12,000    |
| SD             | 2500        | 30              | \$75,000    |
| VXS crate      | 11500       | 30              | \$345,000   |
| VME CPU        | 3400        | 31              | \$105,400   |
| L3 farm node   | 5000        | 12              | \$60,000    |
|                |             | Total detectors | \$1,762,400 |
| VXS crate      | 11500       | 1               | \$11,500    |
| Discriminators | 2500        | 60              | \$150,000   |
| VME64X crate   | 8100        | 3               | \$24,300    |
| V1190          | 11010       | 15              | \$165,150   |
| VME CPU        | 3400        | 4               | \$13,600    |
| TID            | 3000        | 1               | \$3,000     |
| SD             | 2500        | 1               | \$2,500     |
|                |             |                 | \$370,050   |
|                |             | Grand Total     | \$2,132,450 |

# Other projects

- SuperBigBite
  - 242 hadron calorimeter
    - 16 FADC
- Hall 12 GeV upgrade
  - VDC 2944 channels
    - 24 V1190 TDC
  - 50 FADC
  - CTP, TS, TD,SD, 2 VXS crates
- Other experiments : Primex ? Up to about 130 JLAB FADC available

## **SIDIS** electronics

| Modules        | Unit price | Quantity        | Price       | Borrow          |
|----------------|------------|-----------------|-------------|-----------------|
| FADC 250       | 4500       | 144             | \$648,000   | HRS + SBS       |
| CTP            | 5000       | 15              | \$75,000    | HRS             |
| SSP            | 5000       | 2               | \$10,000    | HRS             |
| GTP            | 5000       | 0               | \$0         | HRS             |
| VXS crate      | 11500      | 0               | \$0         | SBS             |
| TS             | 3500       | 0               | \$0         | HRS             |
| TI             | 3000       | 24              | \$72,000    | HRS             |
| TD             | 3000       | 2               | \$6,000     | HRS             |
| SD             | 2500       | 24              | \$60,000    | HRS             |
| VXS crate      | 11500      | 24              | \$276,000   | HRS             |
| VME CPU        | 3400       | 19              | \$64,600    | HRS             |
| L3 farm node   | 5000       | 12              | \$60,000    |                 |
|                |            | Total           | \$1,271,600 |                 |
|                |            |                 |             |                 |
| VXS crate      | 11500      | 0               | \$0         | HRS             |
| Discriminators | 2500       | 50              | \$125,000   | HRS             |
| VME64X crate   | 8100       | 0               | \$0         | HRS             |
| V1190          | 11010      | 0               | \$0         | HRS             |
| VME CPU        | 3400       | 0               | \$0         | HRS             |
| TID            | 3000       | 0               | \$0         | HRS             |
| SD             | 2500       | 0               | \$0         | HRS             |
|                |            |                 |             |                 |
|                |            | Total timing    | \$125,000   |                 |
|                |            |                 |             | With 20 % spare |
| L/ L/ LUIL     |            | Total detectors | \$1,396,600 | \$1,675,920     |

### Test run setup

- MRPC
  - V1290
  - JLAB or SIS FADC
- GEM / Hadron Blind Detector
  - APV25 (UVA)
    - SRS readout
    - MPD

#### DAQ electronics projects at UMass: spring and summer 2012 R.Miskimen

• UMass is responsible for the final assembly and testing of all <u>380 FADC modules</u> for Hall D. This activity will take place at UMass summer 2012, probably stretching into the fall.

• An undergraduate, Fabien Ahmed, spent the summer of 2011 at JLab working with the electronics group on FADC tests. A graduate student, Bill Barnes, and team of undergraduates will work on the electronics tests at UMass.

• Operations at UMass will include mechanical assembly of the VME boards, programming the FPGA's, verifying board operation, measuring and recording noise levels.

 $\bullet$  Readout through a Wiener USB board in the VXS crate, connected to PC

#### DAQ electronics projects at UMass: connection to SOLID

• This activity helps Hall D, only helps SOLID by building expertise in the collaboration for working with and debugging DAQ electronics

• With support from Hall A, we would develop a CODA based DAQ test station at UMass: <u>replicate the one VXS</u> <u>crate/sector readout for PVDIS/SOLID</u>

Need CODA, and to borrow CTP, SSP, and CPU

Test DAQ rates, triggers, software for FADC

# Hall A HRS DAQ Test stand

- Injector Compton

   2 FADC and SD boards
- Ordered parts
  - 2 VXS crates
  - 4 FADC
  - 2 TI, SD, TD
  - CODA3 still in the work (maybe out at end of February) : test L3 Farm
  - Application for Compton Counting DAQ for PREX ?

# Simulation

- Simulation of background up to digitization level
  - Occupancies and event size
  - Trigger simulation
  - Data reduction

# Conclusions

- Coincidence trigger to reduce rate to about 50 KHz
- APV25 limiting DAQ rate
- Timing needed for Large Angle Only for TOF
- Overlap of electronics with other experiment
- Around 1.7 M \$ including spares for PVDIS and SIDIS
- Test of electronics for test run (APV25)
- Test stand at Jlab and Umass Going for Hall D type electronics

# Backup

#### **SoLID SIDIS Detector Rates**

• In 50 ns windows, 11 GeV

| Detector | Rate    | Hits | Туре         | Data Size per hit  |
|----------|---------|------|--------------|--------------------|
| GEM      | 4.4 GHz | 220  | Hits (time)  | 4 Byte x 2 (X/Y)   |
| LC       | 120 kHz | 1    | Energy, Hits | 8 Byte x 2 (PS/SH) |
| FC       | 200 MHz | 10   | Energy, Hits | 8 Byte x 2 (PS/SH) |
| LGC      | 40 MHz  | 3    | Energy, Hits | 8 Byte x 2 (split) |
| HGC      | 60 MHz  | 4    | Energy, Hits | 8 Byte x 2 (split) |
| MRPC     | 850 MHz | 45   | Hits         | 4 Byte             |
| SC       | 300 MHz | 15   | Energy, Hits | 8 Byte             |
| Total    |         |      |              | 2.5 kB             |

#### With header and other over head event size is ~ **4 kB**



Thomas Jefferson National Accelerator Facility SoLID SIDIS Collaboration Meeting



# L1 Trigger

• Electron Singles Trigger:

- 
$$LC > 400 \text{ MeV} \mid (FC > 400 \text{ MeV & LGC})$$

$$T_{L}^{e}|_{11(8.8)GeV} = Y_{L}^{e} + Y_{L}^{\gamma} + \frac{Y_{L}^{h}}{R_{LC}} = 11 + 52 + \frac{56}{20} = 66(55)kHz$$

$$T_F^e \mid_{11(8.8)GeV} = Y_F^e + \frac{Y_F^{\gamma}}{R_{LGC}} + \frac{Y_F^{\gamma}}{R_{LGC} \cdot R_{FC}} = 89 + \frac{620}{40} + \frac{6100}{40 \cdot 10} = 120(180)kHz$$

- Total event rate: 190 240 kHz
- Frontend data rate: 800 1000 MB/s
- ROCs can barely handle this rate
  - Assuming 10 VME crates, 100 MB/s per ROC
  - add more crates since PVDIS uses > 30
- Maybe a little bit too much to write to the tape
- Not much room for improvement, already very close to electron yield.



# **Reduce L1 Trigger: Two Options**

- Make coincidence with another charged particle in Forward detector
  - FC > 200 MeV && MRPC && Scintillator

$$T_F^h \mid_{11(8.8)GeV} = Y_F^h + Y_F^e + \frac{Y_F^{\gamma all}}{R_{MRPC} \cdot R_S} = 6 + 0.1 + \frac{200}{20 \cdot 6.5} = 7.7(6.9)MHz$$

- Coincidence rate with 35 ns window ~ 50 kHz
- Use L3 farm
  - With powerful parallelism computing, we can easily reduce the rate by a factor of 5
  - Reduce the difficulty to put MRPC (customized VME board) into the trigger logic
- Both options give 200 MB/s data rate to the tape



