SoLID Simulation

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu

with Ole Hansen, Rich Holmes, Xin Qian, Zhiwen Zhao

February 3, 2012

- (sol)gemc Overview and Updates
- Background Rates
- Baffles
- Optics
- Tracking
- Forward

(sol)gemc

Present software suite:

- gemc from CLAS12 used as base framework for simulations
 - Geometries/detectors specified in mysql database
 - Modular hit processing
 - Standardized input (lund) and output (EVIO)
 - Visualization

- solgemc is a library package built as an extension
 - solgemc Builds on functionality, additional hit processes
 - libsolgemc Built on Hall A analyzer, includes GEM digitization, class representations of GEMs/geometries, tracking
- Stand alone event generators for DIS, $\pi^{+,-,0}$ generation, elastics, \ldots

(sol)gemc Updates

gemc

- geant 4.9.5 changes build process to cmake, some new low EM processes available
- Mauri integrating with gemc, need to test building for offsite, implications on solgemc
- Materials can be specified in database had to add in solgemc before
- Multiple hits in detector now possible
- FADC-style digitization to be templated
- libsolgemc
 - Lots of additions see tracking
- Event generation
 - Elastic ep (en) generation

Background Rates

- Need to continue comparison/reconciliation break down by particle and momentum bins, need more statistics in e⁻ bins
- Differences with GEANT3 versions need to be considered as well
- $\bullet\,$ Rates need to be quantified for detectors fed into MC for hit/DAQ rates
 - SIDIS a concern? Need SIDIS event generator?

For uniform magnetic field in z direction, particle motion for v = c, p [GeV], scattering angle θ as function of z is given by:

- - For 11 GeV beam, worst particles of interest deviate from linear r by few %

Baffle Design Considerations

- Range of $x_{\rm bj}$ at fixed θ defines cut
- Forbidding line of sight fixes width and spacing
- Too many baffles can have low momentum "jumping"
- Extended targets make the situation more complicated

More Baffle Design Considerations

- Too many baffles can also produce backgrounds
- Too many baffles could thin structural integrity
- Raster effects need to be included (not currently present)
- Limiting to 30 slits (Eugene's design)
- Using 6 baffle planes (Eugene's design)

Design from Raytracing

• Raytracing provides best representation for magnet CLEO, last baffle:

- \bullet Look at distributions in ϕ at various radial blocks
- Determine widths of distributions

Seamus Riordan — SoLID Feb 2012 SoLID Simulation 10/29

Design from Raytracing (2)

Considerations for getting baffles

For all CLEO blocks

Compared to Eugene:

• Eugene's still come out better, especially in mid-x range

- Can probably improve by opening up lower angles
- Should superimpose results from Eugene's baffles on these would be enlightening

Things to consider:

- Absolute position calibration
 - Plugable holes placed in baffles to act as ray sieve with field off
 - Survey detectors to points on baffles give fixed position and angle of tracks
 - Need to consider practicalities which rays to choose, minimize holes in baffles, size of holes, ease of plugability
- Momentum calibration
 - $\bullet~$ Use elastic ep on $\rm LH_2$
 - At fixed *R* on GEM, will have small range of *p* based on extended target
 - Coverage will be limited but exploit azimuthal asymmetry
 - Different beam energies will give different p at R
 - Need to examine rates and potential beam energies, field strengths

Tracking for SoLID unique challenge

- Rates are quite high up to 8 kHz/mm^2
- Parity quality experiment systematics possible concern
- Data rates very high need to do tracking on the fly

Strategy

- Use GEM chambers as coordinate detectors
- Build off experience/work from SBS project
- Characterize tracking early by simulation

Goals

- Benchmarks
 - Tracking rate/how it scales with hits
 - Tracking efficiency (num of real tracks reconstructed/num of real tracks)
 - Effect of noise in clustering/fits (hits replaced with/distorted by noise)
 - Pure noise tracks (ghost tracks)
 - Multi-track reconstruction efficiency
 - Helicity dependence of reconstruction (efficiency and quality)
 - Noise correlation between planes (induced photons)
- Benchmark conditions to map
 - $\bullet~$ Background rates $\times 0$ through $\times 5$
 - Background rate derivatives (for helicity dependence)
 - Uncorrelated correlated backgrounds
 - Readout strip configuration: x/y vs. r/ϕ

Roadmap

General considerations

- Defined input and output data structures for tracking code
- Output from tracking should be kept standardized so we can easily compare

Development

- Input and output standards in place
- Developed GEMC banks output in SBSGEM hit process
- Created library, libsolgemc, for loading banks output, representing GEM hits/strips/geometries, clustering/tracking code
- For library, built on Hall A analyzer, ROOT output
- Potential Parallel activities
 - Implement other algorithms into libsolgemc
 - Evaluate benchmarks

Framework

GEMC Integration with SBS GEM Code

- GEMC outputs raw hits in several GEM layers
 - Tag by ID number

 e.g. XXYY, XX
 defines chamber,
 YY defines
 chamber region
 - Hits in drift gap, position of gap entrance and exit, and in readout strip plane

 GEM response parameters tuned on realistic responses observed at $\mathsf{COMPASS}$

- Discrete ionization points and energy deposited defined by Geant4, written out
- Poisson defines distribution, average number of pairs given by

$$\bar{n}_{
m ion} = \Delta E/W_i$$

• Diffusion and drift, governed by diffusion coefficient *D*, assume constant *v*

$$\sigma_s(t) = \sqrt{2Dt}$$

GEM Response - Gain, Digitization for Time

• Multiplication by Furry distribution

$$f_{\mathrm{Furry}} = rac{1}{ar{n}} \exp\left(-rac{n}{ar{n}}
ight)$$

- Now have Gaussian distribution associate with set of strips (strip geometry first relevant here)
- Output timing given by shaped amplitude A and time constant T_p ~ 50 ns

$$v = A \frac{t}{T_p} \exp\left(-t/T_p\right)$$

• FWHM $\sim 100~{\rm ns}$

APV25 chips used for digitization of GEM signals

- Provide 3 successive time samples of 25ns
- Analog pipelined readout into VME

Multipeak timing analysis

- Using the timing shape from above, online peak finding can be done with three samples
- Given form of timing on previous page, only three samples are necessary to deconvolute peak amplitude

$$s_k = w_1 v_k + w_2 v_{k-1} + w_3 v_{k-2}$$

$$w_1 \sim e^x/x, w_2 \sim 2/x, w_3 \sim e^{-x}/x$$

 $x = \Delta t / T_p$, Δt is sampling interval S. Gadomski, et al., Nucl. Instr. and Meth. A 320 (1992) 217.

Tracking Framework

- Digitization framework written
- Reads EVIO file, casts it into data structure, applies GEM response, produces digitized strip hits
- Need to debug any issues validate with real data? come about with tracking
- Could add further low level effects: Constant pedestal shifts. timing
- Need to add parallel facilities for calorimeter, Cerenkov not difficult at this stage 24/29

Seamus Riordan — SoLID Feb 2012 SoLID Simulation

Tracking Framework

Working on now:

- Decoding strip hits and putting into tracking
 - Followed similar output as SBS tracking, some version of code already exists
 - Optimal clustering algorithm will need to be evaluated separate from tracking algorithms
- \bullet Should employ amplitude association, amplitude χ^2 check at the end

Algorithms

- Xin's Progressive Algorithm
 - Flexible, works for SIDIS and PVDIS
 - Starts with seed, searches in progressively narrow spatial windows
 - Already shown to be feasible for PVDIS/SIDIS rates
 - Needs to be implemented for analyzer
- Ole's Tree Search Algorithm
 - Requires straight tracks, bend for SoLID sufficiently small; applicable at some level
 - ϕ is linear in z for ideal solenoid
 - r deviates from linear in by few % for lowest p
 - Uses recursive template matching to find tracks
 - Fast and efficient desirable for SoLID, runs in $O(\log n)$
 - Hasn't been done for these specific environments
 - Implemented for analyzer need to set up patterns

Complete

- Produce general software as specified above
- Field maps available for CLEO
- Implement Eugene's baffle design and reproduce acceptance
- Simple detector responses (done in GEMC)
- Stolen work from SBS for GEM detailed response
- Useful event generators
- Backgrounds in FLUKA

Milestones 2/2

In progress

- Cerenkov
- Calorimeter
- Reproduce baffle design software
- Background studies in Geant4

Ahead

- Cerenkov in GEMC
- Fully optimized, realistic CLEO baffle, updated FOM
- Finalized yoke for CLEO and field maps
- Additional realistic detector responses/digitization
- Tracking evaluation
- Updated background/radiation hardness studies

Questions

What do we need for director's review, and onward?

- Manpower Division
 - Cerenkov designs Eric or Simona
 - Calorimeter design Cal. Group
 - Cerenkov in GEMC Eric or Simona
 - Rich, Ole, Seamus
 - Hall A Analyzer as general postprocessing framework (all detectors)
 - Tracking framework completed
 - GEM responses/digitization
 - Fully optimized, realistic CLEO baffle, acceptance, FOM Seamus
 - Basic tracking demonstration in GEMC with Ole and Rich
 - Full tracking evaluation with Ole and Rich
 - Background discrepancies reconciled
 - Radiation concerns on electronics/detectors
 - Quantitative DAQ issue analysis with Alex

Major points:

- Background rates from GEANT3 need to be reconciled/understood with present software
- Baffles need additional work, but good start is in place
- Several optics ideas need to be worked on
- Progress has been made in realizing goals path is clear, need time and manpower to complete