SIDIS Gas CherenkovS

S. Malace, H. Gao et al.

SoLID Collaboration Meeting, Feb. 3-4 2012

Outline

Update on the simulation:

- → the electron Cherenkov: GEMs+CsI
- \rightarrow the pion Cherenkov: maPMTs
- → Hardware tests: maPMT H8500C-03

Cherenkov yield outputted by the simulation depends on: gas density, index of refraction, gas absorption length, photocathode Q.E. + ...

Many thanks to Bob Azmoun (BNL) for providing me with very detailed information on the PHENIX corrections to the Cherenkov photon yield and on the N_{pe} calculation

Cherenkov yield outputted by the simulation depends on: gas density, index of refraction, gas absorption length, photocathode Q.E. + mirror reflectivity

Mirror performance (reflectivity) in UV could be an issue: systematic study of photoelectron yield as function of possible mirror performance

 \rightarrow Expected photoelectrons yield

Two parametrizations for mirror reflectivity used (gives the uncertainty)

PHENIX factor: 0.516 (mesh and photocathode transparency, transport efficiency)

Safety factor: 0.8

Work in progress

→ Study electron cut
efficiency as a function of
detector resolution
(GEMs+CsI)
→ Study pion contamination

(GEMs+Csl option)

 \rightarrow Study photoelectron cut efficiency as a function of detector resolution

→ The distributions are obtained from the convolution of Poisson and Gauss functions

→ The "assumed" detector resolution enters as the σ of the Gauss distribution → The GEMs+CsI p.e. resolution not readily available; will probably have to extract it from the HBD distribution

 \rightarrow Study photoelectron cut efficiency as a function of detector resolution

 \rightarrow Mean number of photoelectrons: ~ 25

 \rightarrow Study photoelectron cut efficiency as a function of detector resolution

 \rightarrow Mean number of photoelectrons: ~ 20

 \rightarrow Study electron-pion separation for electrons with a momentum larger than the typical pion threshold in CF₄ (~3.95 GeV/c)

 \rightarrow To do: scale the pion distribution with the pion:electron ratio and calculate the pion contamination for a given cut on number of photoelectrons

SoLID vs PHENIX

Gas length: 0.515 m Index of refraction n, CsI Q.E., CF₄ transmittance corrections: same as PHENIX

Note: In the excel table sent by Bob the integration is actually done between 99.5 nm and 200.5 nm; if I use these limits in GEANT4 (instead of 100 nm to 200 nm as above) I would get an yield of 141.29 in very very good agreement with the PHENIX number

SoLID: GEANT4-based simulation

Example: Cherenkov yield in one energy bin

SoLID Geant4: uses the convolution of the gas transparency with the photon path length (not all Cherenkov photons are created at the entrance in the gas)

Highest energy bin: transmittance correction very large

PHENIX: applies an overall correction to all photons created in a given energy bin regardless of their path length

SoLID: GEANT4-based simulation

Example: Cherenkov yield in one energy bin

SoLID Geant4: uses the convolution of the gas transparency with the photon path length (not all Cherenkov photons are created at the entrance in the gas)

Lowest energy bin: transmittance correction very small

PHENIX: applies an overall correction to all photons created in a given energy bin regardless of their path length

Design: one ring of spherical mirrors + 9 H8500C-03 PMTs per sector + straight cones + C_4F_8O at 1.5 atm and 20 C (pion threshold ~ 2 GeV)

Couldn't make the photon detector smaller:

 \rightarrow constraints on PMT position in the tank

→ gas with high index of refraction: large enough Cherenkov cone to impose constraints on the photon detector size given the wide kinematic range to be covered

Mirrors will be kept in one piece per sector

Design: one ring of spherical mirrors + 9 H8500C-03 PMTs per sector + straight cones + C_4F_8O at 1.5 atm and 20 C (pion threshold ~ 2 GeV)

Design: optimized to get uniform photoelectron yield across kinematic range of interest (if possible)

\rightarrow Parametrizations, corrections for simulation

Design: one ring of spherical mirrors + 9 H8500C-03 PMTs per sector + straight cones + C_4F_8O at 1.5 atm and 20 C (pion threshold ~ 2 GeV)

6" x 6" (9 H8500C-03 per sector) with Straight Cone (π^+) 40 (simulation x 0.5 30 0 O Smaller than at higher momentum because of 20 Photoelectrons proximity to threshold C₄F₈O: 1.5 atm, 20^oC 9.3 deg, z_{target} = 0 cm 10 9.3 deg, $z_{target} = 20$ cm 14.3 deg, $z_{target} = 0$ cm 14.3 deg, z_{target} = -20 cm 0 2 З 5 6 Energy (GeV)

Index of refraction not well measured: study sensitivity of photoelectron yield to the value of n "plugged" in the simulation

Hardware Tests: H8500C-03

Photon Detector: H8500C-03

Why this one over other PMTs?

- \rightarrow Field resistant
- \rightarrow Suitable for tiling

Parameter		H8500C	H850	00D	H8500C-03		H8500D-03	
Spectral Response		300 to 650			185	185 to 650		
Peak Wavelength		400						
Photocathode Material		Bial			(ali			
Window	Material	Borosilicat	e glass			UV	glass	
	Thickness	15						
Dynode	Structure	Metal channel dynode						
	Number of Stages	12						
Number of Anode Pixels		64 (8 × 8 matrix)						
Pixel Size / Pitch at Center		5.8 × 5.8 / 6.08						
Effective Area				49 ×	49			
Dimensional Outline ($W \times H \times D$)				52×52	× 27.4			
Packing Density (Effective Area / External Size)		89						

H8500C-03:Tests for SoLID

Bench tests:

 \rightarrow measure the single photoelectron response

 \rightarrow started tests of a new device purchased by Duke U. in November 2011

\rightarrow field measurements

- → did some at Temple in July 2011 (shown before, not covered here)
- \rightarrow did some more this week
- \rightarrow to do: field test with shielding specially designed for SoLID (?)

In beam test:

 \rightarrow measure response of device to background

Many-many-many thanks to Brad Sawatzky for his guidance/support/help

2 test runs:

 \rightarrow first: November 2011 (testlab)

PMT has low gain: 1.5×10^6 It needs amplification of 100 Amplifier induced noise can be

pulser

amplifier

H8500C-03: Single Photoelectron

Quad division

 \rightarrow Connectors for sum output

\rightarrow Connectors for quad output

→ second: Jan.-Feb. 2012 (2nd floor, counting house)

H8500C-03: Magnetic Field Response

→ Data from Hamamatsu (PMT unshielded)

Magnetic Field [mT]

H8500C-03: Field Measurements

Tinny dark box inside the magnet

Power supply <

Coil

Magnetic field probe in position for field measurement

H8500C-03: Magnetic Field Response

→ Field perp on PMT "side" measurement

H8500C-03: Magnetic Field Response

→ Field perp on PMT "face" measurement

Magnetic Field (G)

transverse field component (much easier)

→ Purpose: get an idea of the maPMT response to background by comparison to a 5" PMT (more commonly used) and to a HBD

 \rightarrow Data taken:

→ scaler rates on a 5 inch Photonis and H8500C-03 maPMT on a Carbon target at a beam energy of 1.717 GeV and beam current of 0.15, 0.5 and 1 μ A with the dark box placed at 45 deg on the rhs of the beam line, concrete shielding only under the box

 \rightarrow scaler rates on both PMTs on a Carbon target at 1 μ A with the box placed at 35 deg next to the HBD on table, no shielding

 \rightarrow ADC data for most settings

 \rightarrow 2-quad coincidence rates \rightarrow *not shown*

→ Set appropriate discriminator threshold to cut out: pedestal, 1 p.e., 2 p.e. etc.

→ Set appropriate discriminator threshold to cut out: pedestal, 1 p.e., 2 p.e.
etc. pedestal

Threshold (photoelectrons)

 \rightarrow The 2 PMTs respond similarly to background