

BACKGROUND/RADIATION IN SoLID

Syracuse University

June 14 2012

(日)、

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 3 Neutron background
- Gems PVDIS
- 5 Calorimeter PVDIS

6 SIDIS

- **CONCLUSION**
- 8 Backup slides

Simulation framework

FLUKA

- Easier tools to directly determine Full Radiation quantities.
- Possibility in boosting the statistic for faster iterations.

GEANT4

• Better for particular tasks in order to semplify the Shielding design (like vertex, energy reconstruction on particle fluxes over regions of interest).

• Established framework from other part of the simulation project of SoLID

Simulation framework

PVDIS Design with FLUKA

Simulation framework

GEANT4 SIDIS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

GEANT4 PVDIS

Neutron Photoproduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Neutron production from electron on 40cm Deuterium

DINREG(GEANT3, Degtiarenko)

GEANT4

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Neutron Origin Vertex on gems (Z)

Design of the shielding

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Neutron Origin Vertex on gems (Z)

Neutron Origin Vertex on gems (Z) Position location.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Neutron Origin Vertex on gems (Z)

Possible strategy of shielding Z vertex results (Red: with SHIELD)

Vertex Z neutron

Displacement damage in Si, NIEL

A. Vasilescu (INPE Bucharest) and G. Lindstroem (University of Hamburg), Displacement damage in silicon, on-line compilation

see http://sesam.desy.de/members/gunnar/Si-dfuncs.html

for actual use of this tabulation, please refer to: A. Vasilescu and G. Lindstroem Displacement damage in Silicon on-line compilation: http://sesam.desy.de/~gunnar/Si-dfuncs

neutron induced displacement damage in silicon -most reliable data, listed for kinetic energies between 0.1meV and 10 GeV-P.J. Griffin et al., SAND92-0094 (Sandia Natl. Lab. 93), priv. comm. 1996 A. Konobevev, J.Nucl.Mater, 186 (1992) 117 M. Huhtinen and P.A. Aarnio, NIM A 335 (1993) 580 and private comm.*) *) tabulation see also A. Ferrari (ATLAS TDR '97), priv. comm. 1997

Griffin		Huhtinen		Konobeyev	
Ekin [MeV]	D/(95MeVmb)	Ekin [MeV]	D/(95MeVmb)	Ekin [MeV]	D/(95MeVmb)
1,025E-10	1,575E-02	8,050E+02	6,004E-01	2,000E+01	2,071E+00
1,075E-10	1,537E-02	8,150E+02	5,980E-01	2,500E+01	2,049E+00
1,125E-10	1,503E-02	8,250E+02	5,959E-01	3,000E+01	2,041E+00
1,175E-10	1,470E-02	8,350E+02	5,942E-01	4,000E+01	2,012E+00
1 0005 10	1 4005 00	0 4EOE . 00	E 000E 04	E 000E . 01	1 0055.00
					(周) (三)

Ronobcycv						
kin [MeV]	D/(95MeVmb					
000E+01	2,071E+00					
500E+01	2,049E+00					
000E+01	2,041E+00					
0005 01	0.0105.00					

ъ

Displacement damage in Si, NIEL

```
(Non Ionizing E-Loss) for e^-, p, \pi, n
```


▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Displacement damage in Si, NIEL

What is a tolerable level for APV25 (GEM) ?

- CMS experiment total dose expected be around $5 \times 10^{13} \frac{N}{cm^2}$
- CMS experiment Neutron flux peaks at 1MeV (curves norm to 1MeV Neutron)
- Our flux is (2000*h* at $100\mu A$) $5 \times 10^{13} \frac{N}{cm^2} \Rightarrow 1.1 \times 10^{-8} \frac{N}{e^- cm^2}$

What is a tolerable level for Shashlik Calorimeter?

• Extensive irradiation test has been carried on by the LHCb collaboration

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• A limit of 1Mrad of full dose can be established.

Shower evolution in the Calorimeter

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Calorimeter position PVDIS

Radiation dose (rad) in PVDIS for 2000h at $100\mu A$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

(ZOOM 5cm) Radiation dose (rad) in PVDIS for 2000h at $100\mu A$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

How radiation is affecting the calorimeter?

- Just $1^{st}cm$ of the calorimeter will be getting a dose > 1Mrad
- 1*cm* correspond in \sim 0.4 radiation length (will not affect too much the e^- shower)
- Future implementation of the shielding will be designed to still lower the radiation on those modules

Radiation on SIDIS

Neutron radiation dominates the PVDIS configuration. What is the comparison with SIDIS?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Radiation on SIDIS

Neutron radiation dominates the PVDIS configuration. What is the comparison with SIDIS?

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q ()

Radiation on SIDIS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Radiation on SIDIS

What is the comparison for 1MeV eq radiation in the gems?

SIDIS Gem n.1

(日)、

э

Results and future goals

CONCLUSIONS, TO DO

- A Shielding configuration has been developed and studied in order to control to a desired level the radiation with PVDIS configuration for SoLID
- The SIDIS configuration shows consistently less radiation damage
- Further implementation on the design are under way in order to further reduce the damage on the electronic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BACKUP SLIDES

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

EC radiation damage LHCb test on Shashlik

FIBER

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Radiation in Hall A

$$1\frac{pSv}{e^-} = 2.25 \times 10^8 \frac{rem}{h100\mu A}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1MeV neutron eq NIEL flux on last scintillator layer of EC

Niel weighted $\frac{Neutron}{cm^2}$ flux for 2000*h* at 100 μA

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで