SoLID Software Development

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the SoLID Software Group

June 14, 2012

• Several active collaborators in software development:

Seamus Riordan	University of Massachusetts, Amherst
Ole Hansen	Jefferson Lab
Richard Holmes	Syracuse University
Xin Qian	Caltech
Lorenzo Zana	Syracuse University
Zhiwen Zhao	University of Virginia

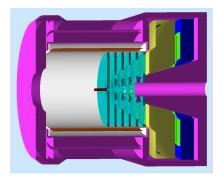
- Framework Overview
- Event generators, backgrounds
- Baffles
- GEM digitization

Software Goals

Ultimate software goals in planning SoLID:

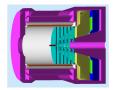
- Optimize figure-of-merit for experiments
- Understand experimental background rates and asymmetries
- Optimize detector designs and verify experimental needs
 - Tracking detectors,PID,Calorimetry
 - DAQ
- Understand magnetic optics and produce optimized PVDIS baffle design
- Produce fully digitized simulated experiment events for analysis

Design philosophy:


- Use modern simulation package
- Have flexible event input for stand-alone generators
- Have standard set of output
- Avoid hardcoding geometries to allow ease of design changes
- Avoid reinventing the wheel

(sol)gemc Overview

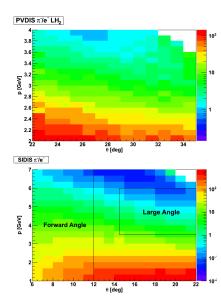
- GEANT3/comgeant used for original PVDIS and SIDIS proposals, but no longer supported
- Geant4 still actively being developed, can be implemented to meet our needs


GEMC - Geant4 base:

- Originally developed for CLAS12 simulations
- Uses SQL for storing geometry,materials,fields - no hardcoded geometries
 - perl script interface for generating geometries
 - Magnetic field maps are stored locally but described in tables

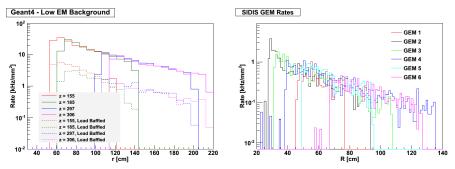
(sol)gemc Overview

- GEMC, cont'd
 - Advanced GUI and visualization included
 - Modularized event hit processing
 - Input using LUND format text file tables
 - Output to EVIO used in JLab CODA data
 - Data organized into banks storing float and integer data
 - Tools available to decode into ROOT or other formats
 - solgemc extension
 - Can replace/add capabilities without interfering with gemc
 - Extend data input formats
 - SOLLUND format includes event weights
 - Write new hit processes, customize output data
 - libsolgem post analysis package
 - Built using Hall A analyzer Object oriented detector analysis
 - Can evio input, can generate ROOT output

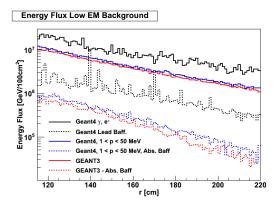

Event Generators

Written several stand-along event generators

- Standardized for GEMC
- DIS rates, PV asymmetries with CTEQ6
- $\pi^{\pm}\text{, }\pi^{0}\rightarrow\gamma\gamma$ with Wiser code
 - Param. SLAC data from π prod. with equivalent γ approx.
- Elastic with nucleon FFs

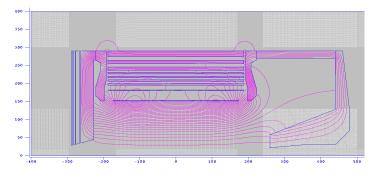

To do:

- Λ decay self-analyzing
- π asymmetries
- Radiative effects

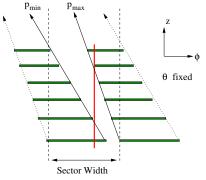

Background Rates

• Background rates can be evaluated using Geant4 processes and aforementioned generators

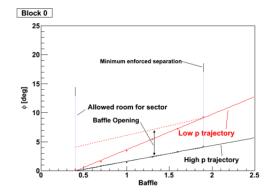
- GEANT3 physics had 1 MeV particle energy cutoff misses important events (especially for GEM rates)
- Rates consistent with proposal within understood physics
- True GEM rates, E-flux about 2-3 time higher than proposal


Background Rates

- GEANT3 physics had 1 $\rm MeV$ particle energy cutoff misses important events (especially for GEM rates)
- Rates consistent with proposal within understood physics
- True GEM rates, E-flux about 2-3 time higher than proposal

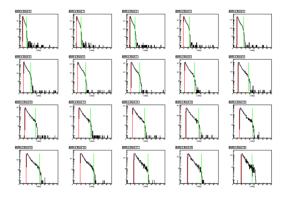

Baffles - Aside: Magnetic Fields

- Baffles would ideally be algorithmically designed for optimization
- Magnetic fields generated using POISSON/Superfish from LANL
- Assumes azimuthal symmetry final details will have to be done using TOSCA



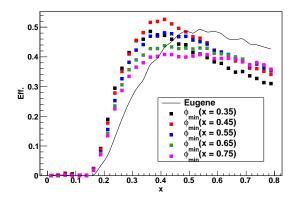
Baffles done for BaBar magnet Optimization must be done for CLEO

- Baffles purpose:
 - Block line-of-sight photons
 - Black low energy charged background (π, e⁻)
 - Maximize acceptance for useful events



Baffles - Design

- Baffles designed along cutoff, minimum p trajectory and a high p trajectory
- High *p* trajectory does not specify cut off, but does drive acceptance
- Perform a fit for momenta passing through each radial block


Baffles - Design

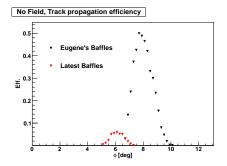
- Baffles designed along cutoff, minimum p trajectory and a high p trajectory
- High *p* trajectory does not specify cut off, but does drive acceptance
- Perform a fit for momenta passing through each radial block

Baffles - Results

In CLEO field:

- Scanning different optimization criteria shows choice in emphasis in kinematic range
- Figure-of-merit ultimately decides best set

Baffles - Photon blocking

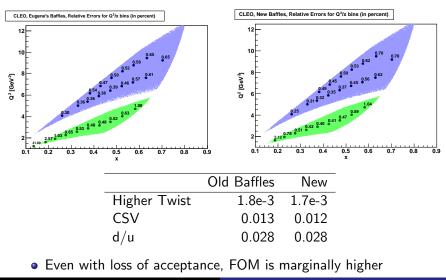

Proposal Baffles

Latest

- Reducing acceptance to block photons equates to loss of about 7% acceptance
- Most photons are coming in from back of the target
- Further adjustments can be made to improve blocking

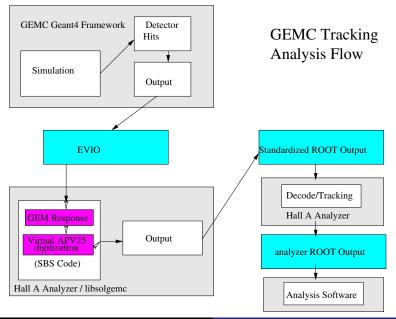
Baffles - Photon blocking

Photon acceptance:



- Reducing acceptance to block photons equates to loss of about 7% acceptance
- Most photons are coming in from back of the target
- Further adjustments can be made to improve blocking

Baffles - Figure of Merit


Proposal Baffles

Latest

Seamus Riordan — SoLID Software	SoLID Simulations	14/18
---------------------------------	-------------------	-------

GEM Digitization/Tracking Framework

Seamus Riordan — SoLID Software SoLID Simulations 15/18

 GEM response parameters tuned on realistic responses observed at $\mathsf{COMPASS}$

 Poisson defines distribution, average number of pairs given by

$$\bar{n}_{\rm ion} = \Delta E / W_i$$

• Diffusion and drift, governed by diffusion coefficient *D*, assume constant *v*

$$\sigma_s(t) = \sqrt{2Dt}$$

 Multiplication by Furry or Poisson distribution $f_{\rm Furry} = \frac{1}{\bar{n}} \exp\left(-\frac{n}{\bar{n}}\right)$ (x.y.z) Drift Diffusing Drifting GEM Gap GEM Gap GEM Gap \$∕\$\$ \$ \$ (xr.yr.zr) Readout Geometric Projection Charge distribution

Digitization - APV25

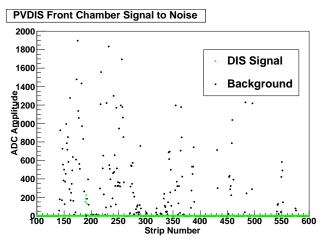
APV25 Chips used for digitization

- Provide 3 successive time samples of 25ns
- Timing given by amplitude A and time constant T_p

$$v = A \frac{t}{T_{\rho}} \exp\left(-t/T_{\rho}\right)$$

Multipeak timing analysis

- Using the timing shape from above, online peak finding can be done with three samples
- Using a CR-RC filter and form of timing on previous page, only three samples are necessary to find peak amplitude

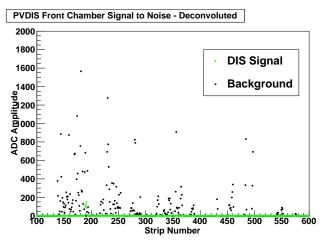

$$s_k = w_1 v_k + w_2 v_{k-1} + w_3 v_{k-2}$$

$$w_1 = e^{x-1}, w_2 = -2e^{-1}/x, w_3 = e^{-x-1}/x$$

 $x = \Delta t / T_p$, Δt is sampling interval S. Gadomski, et al., Nucl. Instr. and Meth. A 320 (1992) 217.

Digitization Results

• Now getting first full simulation digitization results



 Signal/background ratio relatively low - improved by deconvolution

Seamus Riordan — SoLID Software SoLID Simulations 18/18

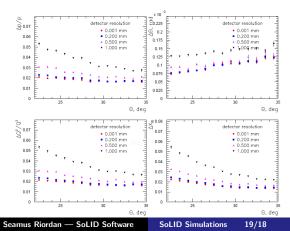
Digitization Results

• Now getting first full simulation digitization results

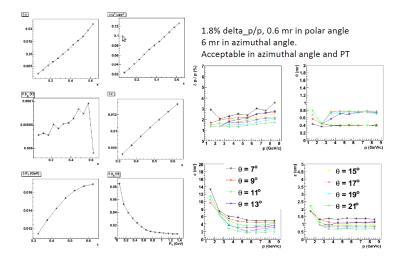
 Signal/background ratio relatively low - improved by deconvolution

Seamus Riordan — SoLID Software SoLID Simulations 18/18

- Development of necessary software well underway
- Suitable framework chosen for scale of project and needs
- Realistic event generators developed
- Auxiliary software for baffle design and digitization in hand

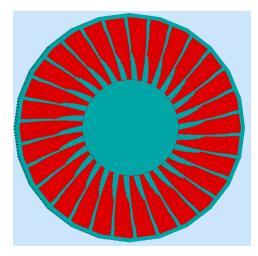

Optics

Rates for 1 μ A:												
E	Rate Range			p Range			p Spread					
[GeV]	$[Hz/mm^2]$			[GeV]			[%]					
4.4	0.5	-	22	2.2	-	3.5		15				
8.8	$2 imes 10^{-3}$	-	0.15	3.0	-	6.0		15				
11	$5 imes 10^{-4}$	-	0.025	3.0	-	7.0		15				
						Ε[GeV]	t[hr]				
To get at least 200/cm/sector at 50 μ A: 4.4 8.8							4.4	0.006				
							1.6					
							11	6				


- $\bullet\,$ Need to calibrate $2-6~{\rm GeV}$ for the experiment
- 8.8 matches that pretty well for p range at given θ
- Few days at 6.6 and 8.8 probably gives very good *p* coverage. Combining with 4.4 GeV with field scan would probably be sufficient
- Working on simulated calibration

PVDIS Resolution

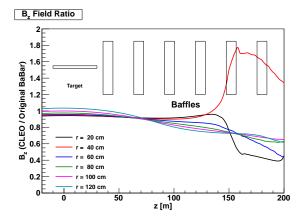
- Previous studies showed that multiple scattering effects will dominate over GEM resolutions in PVDIS
- With 6° wires, get $\delta x = 526 \ \mu m$, $\delta y = 55 \ \mu m$ (with 100 μm base resolution)
- Should be limited by multiple scattering effects



SIDIS Resolution

- Resolution for SIDIS kinematics also sufficient
- Multiple scattering with ³He target effects negligible

Baffles - Shape



- Baffle shape not smooth on outer angle should consider small variations to correct this
- Optimization of field could help, possibly fewer sectors?

Seamus Riordan — SoLID Software

SoLID Simulations

19/18

- Baffle shape not smooth on outer angle should consider small variations to correct this
- Optimization of field could help, possibly fewer sectors?