SoLID DNP and Cryogenic Targets

D Meekins and C Keith 12/14/2012

General Requirements

- Polarized target
 - Success for G2P
 - Standard Hall C/UVA target
 - Needs new magnet for SoLID
- Cryotarget
 - Design is only concept
 - Need design requirements, timelines, funding
 - Need one cell (LH2 or LD2)
- Recent changes in law have forced new safety requirements

Safety: 10 CFR 851

- Must design **AND** fabricate to Code
 - ASME BPVC: V,VIII D1,2, IX
 - ASME B31.3 Process Piping
 - ASME B31.12 Hydrogen Piping
 - NFPA 70,70E
 - NFPA 2
 - NFPA 50,55
 - NFPA 497
 - JLAB
- This takes time and adds to costs
- Design flexibility is limited
- Requires trained and documented competent personnel

Cryotarget

- Completely New Design
 - \circ $\,$ Build on designs of previous systems $\,$

Cell Design

- Bulk boiling and density fluctuations need to be considered
- Cross flow hybrid
- Acceptance will drive design elements
- High magnetic field
 - H2,D2 must be unpolarized
 - Material selection
 - Major components must be outside field
- Refrigerator will have impact on design

Conceptual Design

Outside the field

- 1. Heat Exchanger
- 2. Cryostat
- 3. Pump
- 4. Lifter (30" of travel)
- 5. Piping

Inside field

- 1. **Cell**
- 2. Solid targets
- 3. Piping
- 4. Instrumentation
- 5. Support system

Power

• Cooling Requirements

- 800+ W of beam heat load
- 250+ W of overhead
 - Pump heating and efficiency/friction losses
 - Heater control
 - Transfer line losses

• Refrigerators

- CHL has been removed from CRYO commitment to Halls
- ESR I
 - ~1 kW (slightly more at 20K)
- ESR II
 - More than adequate for this target

Cell Design

- Acceptance will drive much of geometry
 - Max angle of 35°
 - Qweak max angle of ~12°
- Modest boiling and density fluctuation requirements
- Requires careful selection of materials
- Must meet requirements of 10 CFR 851
 - Either meets Code and/or equivalent measures
 - receives extensive testing and review
- Requires close collaboration with Hall A designers and Experiment

Conclusions

- Major design and engineering effort
 - Design requirements must be determined in timely fashion
 - Cost of this effort is non trivial
- Extensive production and operational experience with most components
- Timelines, budgets, and funding
 All needed to complete the project
- Experiment will have to lock down design
 - Every design change will have a cost

SoLID Polarized Proton Target

- Existing JLab targets are optimized for longitudinal running
 - Magnet opening angle parallel to field: ± 55°
 - Opening angle perpendicular to field: ±19°
- SoLID experiments focus on transverse polarization and require opening angle ≥ ± 25°

Recommendation:

Design new 5T magnet and integrate into existing JLab system

SoLID Polarized Proton Target

- Oxford Instruments Design Study (Nov. 2012):
 - Initiated by Don Crabb, UVa
 - Describes a high homogeneity, 5 tesla magnet w/ ± 25° split
 - Helmholtz configuration of 14 superconducting coils in series
 - Operating current for 5 tesla is 106 amps
 - Design, dimensions, and current are similar to Hall B & C polarized target magnets
 - Detailed ANSYS study was performed of forces acting on the coils

Conclusion

"Analysis indicates that 5 tesla with ±25 split access is realisable..." Design Report rfq 13241, Oxford Instruments Nanotechnology Tools LTD, Nov.12, 2012

SoLID Polarized Proton Target

Top view, 1/8th of one set of Helmholtz coils. Magnetic field is left-to-right.

Design Report rfq 13241, Oxford Instruments Nanotechnology Tools LTD, Nov.12, 2012

- Used multiple times at SLAC and JLab Hall C
- Last used in Hall A in 2012 (g2p/Gep)
- Replace original magnet (inoperable) with Hall B magnet
- Major upgrade to nearly every system component
 - New magnet *suspension* system
 - New magnet *rotation* system
 - New 1 K refrigerator
 - New/refurbished/rebuilt pumping system
 - New ASME-compliant quench relief
 - New sample insert (2 NH₃ + 3 background samples)
 - New insert motion mechanism
 - New cryo lines

- Performance during g2p/Gep was exceptional
 - Highly reliable
 - High average polarization

- G2p/GeP: Hall B Magnet was utilized in place of original, inoperable magnet
- Suspension system used for g2p/Gep will simplify integration of the SoLID transverse magnet

Suspension/Alignment bracket

ConFlat flanges replace indium seals for LHe service

5 T magnet from Hall B polarized target