
SoLID DAQ Update

A. Camsonne, R. Miskimen, Y. Qiang SoLID Collaboration Meeting Dec 15th 2012

Overview

DAQ Setup

Event Sizes and Data Rates

APV25 Test Stand

➢ Future Plan

PVDIS DAQ Setup

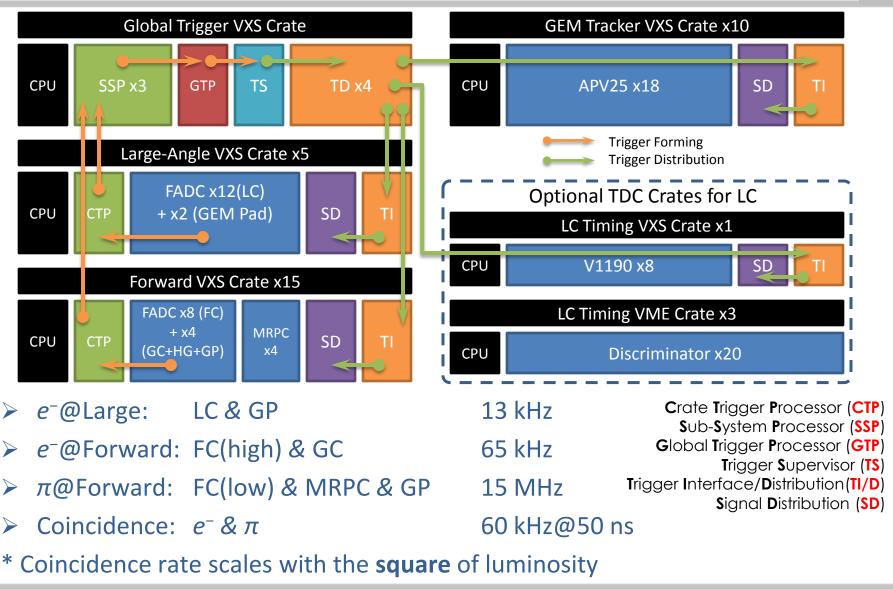
Detector	Module	Module # of Channels	
Calorimeter (CAL)	FADC	114 × 30	8 v 20
Gas Cherenkov (GC)	FADC	9 × 30	8 x 30
GEM	APV25-VME	4800 × 30	5 x 30

PVDIS VXS Crate ×30					
CPU	СТР	FADC ×8	APV25 ×5	SD	TI

Crate Trigger Processor (CTP) Trigger Interface (TI) Signal Distribution (SD)

Trigger rate for each crate: 20 kHz

SIDIS DAQ Channel/Module Counts


Detector	Module	# of Channels	# of Modules
Forward Calorimeter (FC)	FADC	1920	120
Large-angle Calorimeter (LC)	FADC	960	60
Light Gas Cherenkov (GC)	FADC	270	20
Heavy Gas Cherenkov (HG)	FADC	270	20
GEM Pad Readout (GP)*	FADC	150(L)/270(F)	10/20
GEM	AVP25-VME	180k	180
MRPC	VME	7500	60

* Original scintillator bars in forward will be replaced by GEM pad readout if possible

SIDIS DAQ/Trigger Setup

Thomas Jefferson National Accelerator Facility SoLID DAQ

J/¢ DAQ Setup

LC & GP

FC(high) & GC

- Same hardware as SIDIS
- Different Trigger Logic:
 - □ *e*⁻(scattered): FC(medium) & GC
 - Lepton@Large-angle:
 - □ Lepton@Forward:
 - □ Triple Coincidence: $e^- \& I^+ \& I^-$
- > Trigger Rate:
 - □ 15 kHz for triple coincidence with 100 ns window

Total DAQ Hardware

Module	PVDIS	SIDIS	Total	Unit Cost	Cost
VXS Crate	30	31	31	\$11,500	\$356,500
VME CPU	30	31	31	\$3,400	\$105,400
СТР	30	20	30	\$5,000	\$150,000
SD	30	30	30	\$2,500	\$75,000
FADC	240	250	250	\$4,500	\$1,125,000
AVP25-VME	150	180	180	UVa/China	
TI	30	30	30	\$3,000	\$90,000
GTP		1	1	\$5,000	\$5,000
TS		1	1	\$3,500	\$3,500
TD		4	4	\$3,000	\$12,000
MRPC-VME		60	60 China		ina
Total	\$1,842,000	\$1,872,400			\$1,922,400

* Optional SIDIS Large-angle Timing: \$292,980

PVDIS Event Size and Data Rate

GEM Rates per Sector (25 ns window, LH₂, 11 GeV)

	Raw	w/ Threshold	Deconvolution
Hits	1182	555	53
Occupancy	25%	12%	1.1%

Event Size per Sector (50 ns window, 11 GeV)

Detector	Rate	Hits	Туре	Data Size per hit
GEM (25 ns)	47 GHz	555 (threshold)	3xSamples, Time, Position	12 Bytes
Calorimetry	5 MHz	1	Energy, Time, Position	8 Bytes x 2 (PS/SH)
Gas Cher	10 kHz	1	Energy, Time, Position	8 Bytes x 9 (Split)
Total				7 kB

Data Rate per Sector:

□ 20 kHz x 7 kB = 140 MB/s

- > Rates per sector are manageable.
- High occupancy in GEM: 3 samples are absolutely needed. Deconvolution helps, but might be safer to send non de-convoluted signal for offline treatment as long as bandwidth allows.
- > Need two Ethernet links for each crate: ~ 200 MB/s.
- > Test convolution behavior at very high rate.
- Strategy for online data reduction before recording:
 - □ Trace back from shower to define region of interest
 - PID cut
 - Online coarse tracking

SIDIS Event Size

GEM Rates (25 ns window, 11 GeV)

	Raw	w/ Threshold	Deconvolution	Proposal
Hits	5826	1358	122	110
Occupancy	3.2%	0.8%	0.1%	0.1%

Event Size (50 ns window, 11 GeV)

Detector	Rate	Hits	Туре	Data Size per hit
GEM (25 ns)	4.9 GHz	122 (deconv.)	Integral, Time, Position	8 Bytes
LC	120 kHz	1	Energy, Time, Position	8 Bytes x 2 (PS/SH)
FC	200 MHz	10	Energy, Time, Position	8 Bytes x 2 (PS/SH)
GC	40 MHz	3	Energy, Time, Position	8 Bytes x 9 (split)
HG	60 MHz	4	Energy, Time, Position	8 Bytes x 9 (split)
MRPC	850 MHz	45	Time, Position	6 Bytes
GEM Pad	300 MHz	15	Energy, Time, Position	8 Bytes
Total				2.1 kB*

* 17 kB if use only apply threshold on GEM Readout with 3 sample mode

Thomas Jefferson National Accelerator Facility SoLID DAQ

SIDIS Data Rates

➢ 60 kHz Trigger Rate:

Crate Name	# of Crate	Detectors	Total Data Rate	Data Rate per Crate
GEM	10	GEM	59 MB/s	5.9 MB/s*
Large-angle	5	LC GEM Pad	1.2 MB/s	0.24 MB/s
Forward	15	FC GC HG GEM Pad MRPC	63 MB/s	4.2 MB/s

* 98 MB/s is only apply threshold w/ 3 sample mode

Comments on SIDIS

- > Deconvoluted GEM rate consistent with proposal.
- GEM occupancy is low, 1 sample may be OK for less noisy environment, but cannot be used if deconvolution method used.
- > Data rates well under control.
- Still need to test GEM pad readout.

APV25 GEM Readout

Switch Capacitor Array ASICs

- 128 channels
- □ Sample rate: 40 MHz
- □ Buffer length: 192 samples, 4.8 us
- Look back: 160 samples, 4 us

Readout Time/Max Readout Rate:

- $\Box T_APV = 141 \times N_{sample} / 40 \text{ MHz}$
- □ 1 sample mode: 3.5 us, 280 kHz
- □ 3 sample mode: 10.6 us, 90 kHz

PVDIS: 20 kHz

3 sample mode is feasible and needed

SIDIS: 60 kHz

- 1 sample mode if using a global GEM trigger, deconvolution cannot be applied
- 3 sample mode if using crate dependent trigger, taking advantage of low occupancy

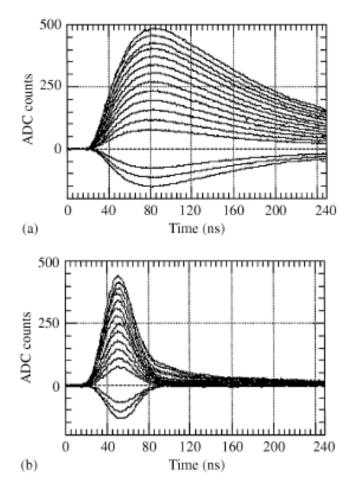


Fig. 5. Response curve of the APV25 as a function of the input signal. (a) Peak mode, (b) deconvolution mode.

APV25 Test Stand at UVa/JLab

University of Virginia:

- Running VME system using multi-purpose degitizer (MPD) modules with CAEN controller.
- □ SRS DAQ system.
- Some work ongoing on electronic noise
- Plan to move to JLab

Jefferson Lab

- □ Test setup deployed
- Development of readout with Intel VME CPU and CODA
- □ Should be able to start testing in 2013
- Evaluation of electronics performance by 2013

Future Plan

Continue work on GEM readout:

- Study threshold and deconvolution efficiency
- Data reduction
- Trigger Simulation (Software):
 - On top of existing physics simulation
 - □ Find optimal trigger logic
 - o Information needed: Energy sum? Hit pattern?
 - Formula to process information
 - o Bandwidth usage: within limit?
 - Minimize background rate
 - \circ Maximum efficiency for real events, less bias
 - Get more reliable trigger rates

Future Plan (continued.)

> Bench Top Tests of Trigger Electronics:

- Setup a small scale DAQ system
- No detector really needed as FADC can replay "predefined" waveforms
- Test the capability of the processing power of various modules: CTP, SSP, GTP
- Possible Resources:
 - Jlab: Pipeline electronics
 - UVa: GEM related
 - UMass: Testing hardware
 - Duke: Min Huang

BACKUP

Thomas Jefferson National Accelerator Facility SoLID DAQ

Comments on GEM Readout

- No show stopper
- Realistic effect of background
- Need to define threshold from MIP signal
- Study hit/tracking efficiency as function of threshold
- Start work on data reduction

