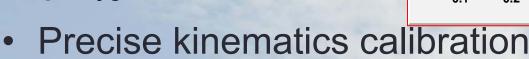
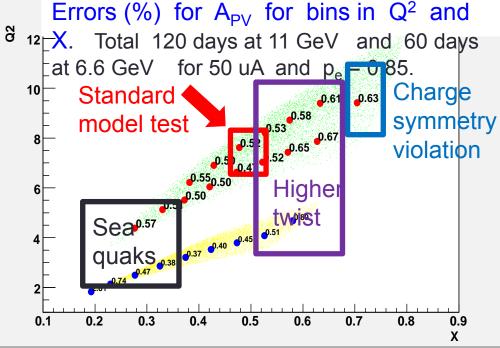


Experimental Requirements

Xin Qian Caltech

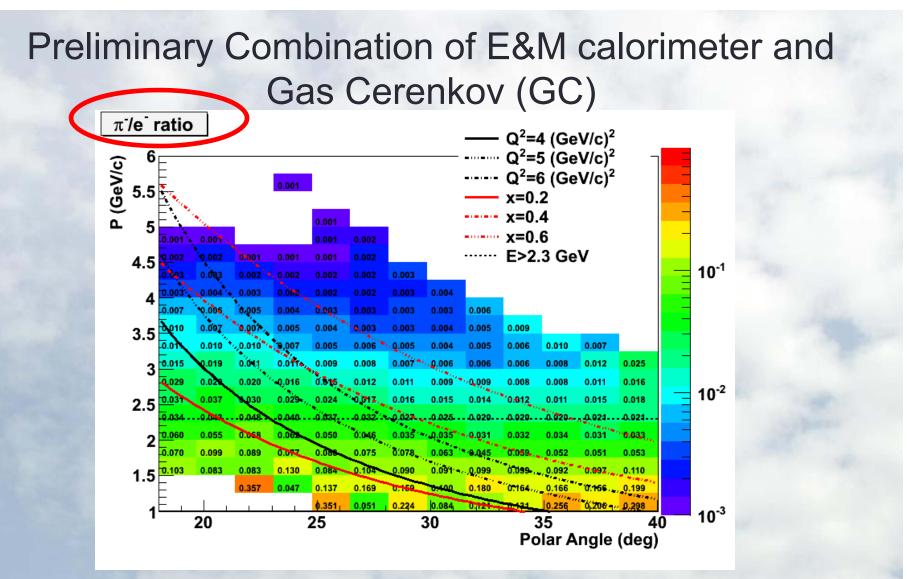
Thanks inputs from Jian-Ping, Bob Michael, Paul and Haiyan.


Physics Program of SoLID Parity Violation DIS: Quark Axial charge, **Charge Symmetry Violation ...** - Inclusive DIS $e + N \rightarrow e' + X$


- SoLID-Spin: Nucleon Spin, Tensor Charge, TMD, Quark OAM ...
 - $e + \overline{N} \rightarrow e' + \pi^{\pm} + X$ - Semi-inclusive Deep Inelastic Scattering (SIDIS)
- SoLID-J/ψ: Nucleon Mass, Non-perturbative gluons +p
 - Exclusive Process SoLID Collaboration Meeting

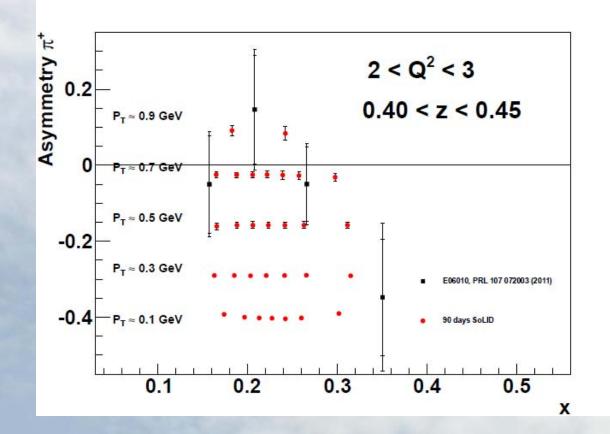
$$e + p \rightarrow e' + J / \psi$$

Requirement of PVDIS


- Large scattering angle, x-range 0.25→0.75,
 W>2.0 GeV, factor of 2 in Q² range for each x
- ~5x10³⁸ N/cm²/s at 11 GeV to reach better than 1% error in each bin → Radiation hardness
- **10**-3 uncertainty in pion contamination
- DAQ: ~ 15 kHz per sector → 450 kHz in total.
- Precision polarimetry 0.4%

Concerns raised by Paul

- HERMES calorimeter paper:
 - Resolution
 - Achieved pion rejection
- What is the rate dependence in pion rejection factor?
- What is the effect of pile-up?
- Radiation load on detectors:
 - How much power is deposited at various angle and on various elements?

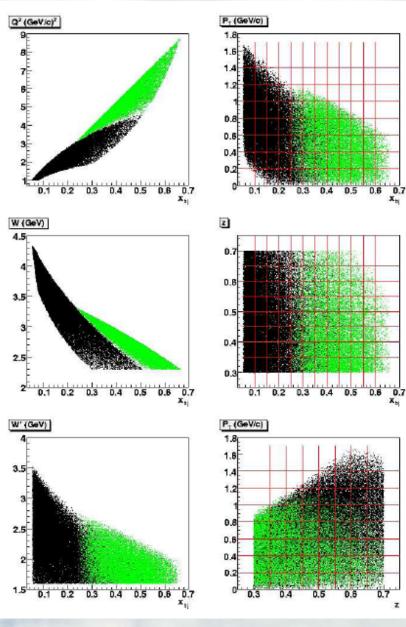


 More realistic estimation in GC, multi-variable-analysis in E&M calorimeter to further reduce π/e ratio

5

Need measurement of pion asymmetry

Projections on Collins Asymmetry (90 Days)

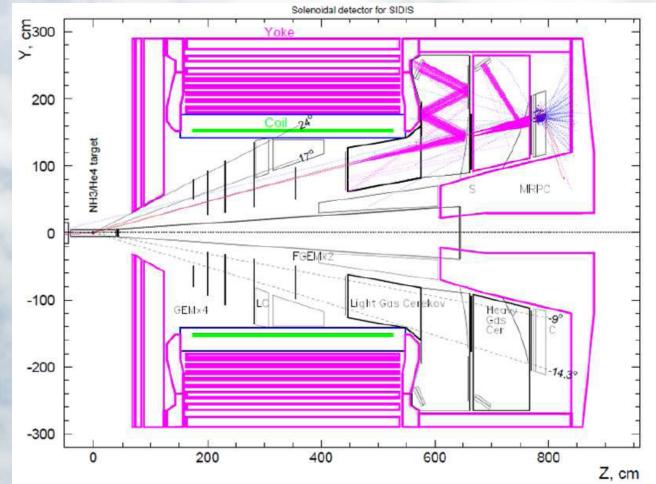

Collins 1/48 bins 4-D Mapping of Asymmetries

Similar for Sivers, DSA of 3He, less requirement for proton

Goal: <10% Tensor Charge, for each bin, we require <0.2% stat. on neutron \rightarrow <3e-4 on raw asymmetry 6% relative sys. + ~0.1% absolute sys. (neutron)

Requirement of SIDIS

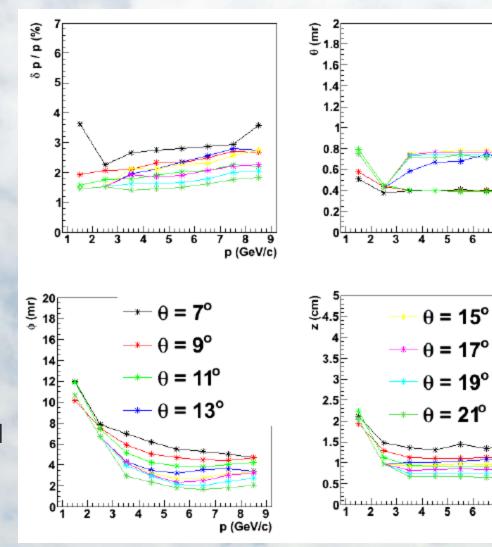
- Kinematics Coverage:
 - 0.05 ~ 0.6 in x (valence)
 - 0.3 ~ 0.7 in z (factorization region)
 - P_T up to ~ 1 GeV (TMD Physics)
 - Fixed target → Q² coverage 1-8 GeV² (~ 2 GeV² in ΔQ² at fixed x)
- Polarized ³He Target:
 - Unpolarized ~ 10³⁷ N/cm²/s
 - ~ 60% higher polarization
 - Fast spin flip (<20 mins)
- Polarized NH3 Target:
 - Unpolarized ~ 10³⁶ N/cm²/s
 - ~70% higher polarization with spin flip



SoLID Collaboration

Requirement of SIDIS

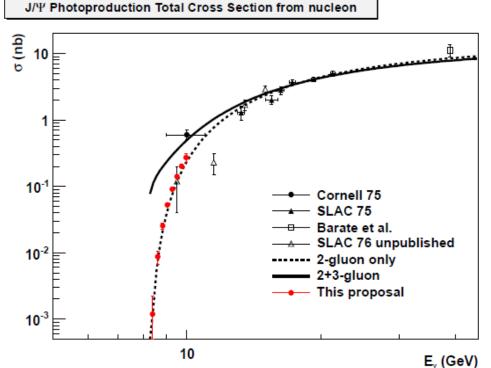
- DAQ:
 - ~ 3kHz
 Physics
 Coincidence
 - ~ 100 kHz
 Single electron
 - ~ 60 kHz
 Coincidence
 - Limits: 300
 MB/s to tape.
- Electron PID:
 - <1% Pion
 contamination
 (asymmetry
 point of view)


•

Pion PID: <1% Kaons and Protons <1% electron contamination

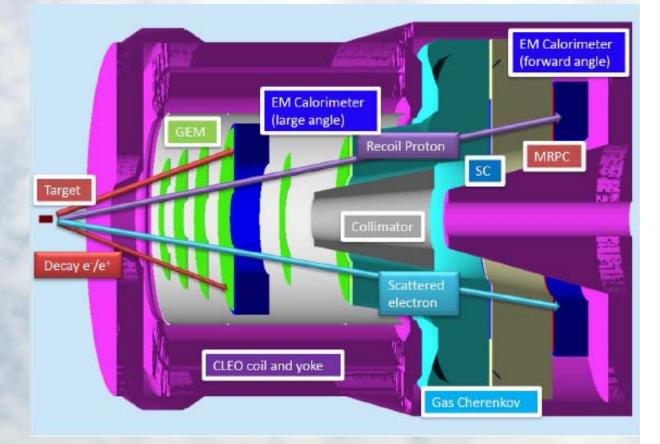
Requirement of SIDIS

- Optics of
 Reconstruction:
 - < a few % in $\delta P/P$.
 - < 1 mr in polar angle.</p>
 - < 10 mr in azimuthal angle
 - ~ 1-2 cm vertex resolution
 - Similar precision required
 - MC results supported a factor of 2-3 better performance


SoLID Collaboration Meeting

8 9 p(GeV/c)

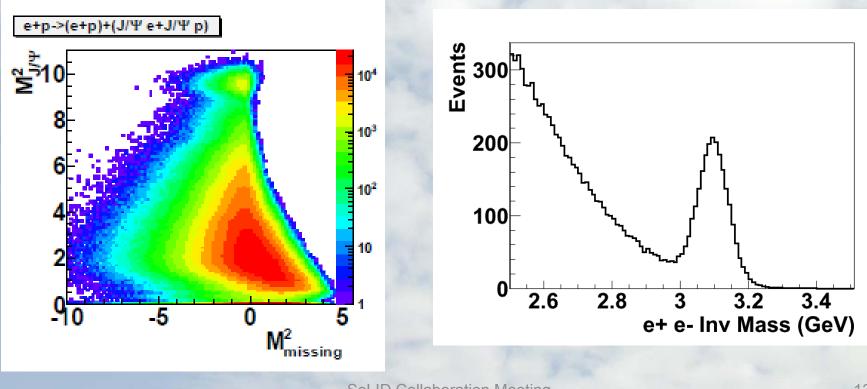
p (GeV/c)


Projection of SoLID-J/ ψ

- 4-fold coincidence:
 - 2g-only: 0.68 kevents
 - 2g + 3g: 2.9 k events
- 3-fold no proton:
 - 2g-only: 2.1 k events
 - 2g+3g: 8.08 k events
- Goal: <10% Cross section measurement

Requirement of J/ψ

- 11 GeV + 15 cm
 Proton Target
- Luminosity: >= 10³⁷ N/cm²/s
- DAQ: Triple
 Coincidence
 Trigger
 - scattered electron,
 decay electron and
 decay positron from
 J/ψ ~ 3 kHz


PID: E&M calorimeter for decay e⁻/e⁺ additional gas Cerenkov for scattered e⁻ MRPC-TOF for recoil proton

Cross Section Validation (Leptonic+Photon)							
$e + p \rightarrow e' + V(e^- + e^+) + p$							
	Bethe- Heitler	ω	ρ	φ	η		
Xs	0.1 ub	1ub	1ub	50 nb	10 ub		
Decay Channel and BR	e⁺e⁻ 1.0	e⁺e⁻ 7.3e-5	e⁺e⁻ 4.71e-5	e⁺e ⁻ 2.97e-4	Γγ 0.39		
Compare d to Jpsi	>10	X2	x1	X0.5	Large		
SoLID capability	good	good	good	good	good		

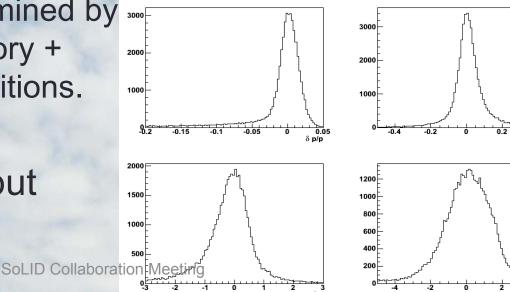
Other Channels: SIDIS channel, e+p elastic for optics calibration, Exclusive Channel (neutral pions, Omega and Rho) also missing mass technique. PR12-006: ATHENNA Solid 12

Requirement of J/w

 Detector resolution: δP/P<2%, δθ~0.6mr δφ~6mr, and δz_{vertex}~1cm essential for background reduction

	PVDIS	SIDIS	J/ψ
Luminosity (N/cm ² /)	~5x10 ³⁸ → Radiation Hardness + Baffle design + pileup	<=10 ³⁷ Sheet of flames in proton-SIDIS	More than10 ³⁷ →detector requirement
PID	10 ⁻³ uncertainty in pion contamination \rightarrow GC + E&M	MRPC + HG $\rightarrow \pi$ E&M + LC \rightarrow e	MRPC→Proton
Detector Resolution/Calibration	Q ²	Angular and momentum	Absolute momentum
Polarimetry	0.4% in beam polarization	>60% 3He >70% NH3 spin flip & yoke design	N/A
DAQ	~30x15 kHz total trigger rate	~100 kHz trigger rate, GEM pad readout?	Triple coincidence
Online Farm → Tracking/optics	Essential to reduce file size	Essential to keep coincidence	Important at higher luminosity
Systematic uncertainty	<0.5% relative	Abs. 1e-3 (neutron) + 6% relative	<10% Xs measurement ¹⁴

Detector Requirement

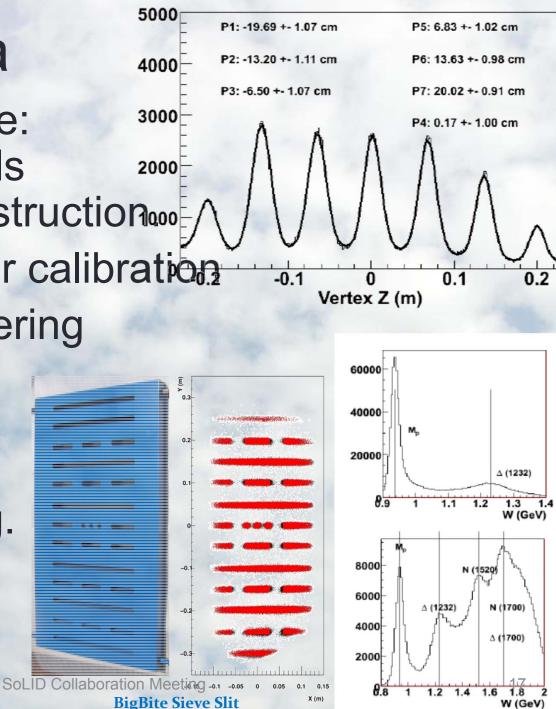

- E&M calorimeter: ~100:1 Pion rejection
- Light Gas Cerenkov ~1000:1 Pion rejection
- GEM position resolution: ~ 100 um (10 degree readout)
 - GEM pad readout in trigger?
- Heavy Gas Cerenkov: >10:1 Kaon rejection
- MRPC TOF: 80 ps timing resolution

Color Legend: PVDIS, SIDIS, J/ψ

- Magnetic field: $\rightarrow \sim 2\%$ momentum resolution
- Yoke design: force limit on coils

Starting Model of Optics

- Along z, the trajectory is a circle.
- With Radius R, and distance along z
 - One can get P_T/P_L -> polar angle
 - Combine R and magnetic field, one can get $P_T \rightarrow P$
 - Azimuthal angle can be determined at the point when the particles enter magnetic field + theta angle
 - Vertex can be determined by unfolding the trajectory + polar angle + hit positions.
- With MC, we can do optics (input/output known)


 $BqR = P_T$

 $R \cdot \theta \sim P_{T}$

 $z \sim P_{I}$

Initial Idea

- Similar to BigBite: 3000 Multi-Carbon foils 2000 for vertex reconstruction000
- Sieve for angular calibration
- e-p elastic scattering for momentum calibration at 1 and 2 pass.
- Need lower mag. field setting for SoLID
- Other ideas?

Optics Working Plan

- Current Optics Model is good for director review etc.
- Future working plan includes:
 - Design the detailed optics working plan (beam energies/current, beam time, target, settings, and checks)
 - Generate simulated data to demonstrate optics reconstruction according to optics working plan.
 - We MUST achieve this before data taking, since tracking needs this information as input (online).

System Integration

- Electron ID: Light Gas Cerenkov + E&M calorimeter (PVDIS)
- Pion ID: Heavy Gas Cerenkov + MRPC (SIDIS)
- Yoke Design + Target/phase space (SIDIS + J/ψ)
- DAQ + online farm with tracking ability
 - Fast GEM calibration, also calorimeter calibration
 - Quick optics calibration, essential input to tracking
- Detector reconfiguration between PVDIS and SIDIS+J/ ψ
- Detector reconfiguration for proton-SIDIS due to sheet of flames