SIDIS Cerenkov Update: Hardware Tests maPMT H8500C-03

S.P. Malace (JLab), H. Gao (Duke)

(reference S.P. Malace, B.D. Sawatzky, H. Gao, to be submitted to NIM A) Acknowledgements: Brad Sawatzky, Drew Weisenberger, Jack Mckisson and the detector group, Chris Cuevas

SoLID Collaboration Meeting, Dec. 14 – 15 2012, JLab

Outline

(reference S.P. Malace, B.D. Sawatzky, H. Gao, to be submitted to NIM A – an arXiv number will be available soon)

→ Since September 2012 (last collaboration meeting) we performed single-photoelectron (SPE) measurements and mapping of H8500C-03 response to magnetic field (more than 2000 runs taken, many hours of data)

→ We tested 3 individual pixels and 2 groups of 16 pixels (2 quads)

Single-photoelectron measurements

→ We clearly identified SPE signals on both individual pixels and sum of pixels (quads)

 \rightarrow We used an established PMT response function to extract the SPE resolution of the H8500C-03

 \rightarrow We gain-matched pixels and shown that the resolution could be improved for sum of pixels

Outline

(reference S.P. Malace, B.D. Sawatzky, H. Gao, to be submitted to NIM A – an arXiv number will be available soon)

Magnetic field measurements

 \rightarrow We measured the effect of magnetic field on SPE distributions on both individual pixels and sum of pixels (quads) – *due to time constraints will not be shown in this presentation*

 \rightarrow We measured the effect of magnetic field on large signals (40 photoelectrons or larger) on both individual pixels and sum of pixels (quads)

 \rightarrow We use magnetic fields as larger as 300 gauss (highest to date on this PMT to our knowledge)

What is it that we measure?

→ We measure the output of 3 individual pixels:

Highest gain - pixel 61 (edge pixel): output = 100

Moderate gain - pixel 45 (central pixel):

output = 79

Low gain - pixel 39: output = 51

(output as read from Hamamatsu map)

Edge pixels behave very differently in magnetic field than central pixels

→ We measure the output of 2 groups of 16 pixels (2 quads: A and B) – likely a configuration to be used for SoLID

										ר	
		P1	P2	P3	P4	P5	P6	P7	P8	T	6.26
		P9	P10	P11	P12	P13	P14	P15	P16	T	6.08
		P17	P18	P19	P20	P21	P22	P23	P24	T	6.08
		P25	P26	P27	P28	P29	P30	P31	P32		6.08
		P33	P34	P35	P36	P37	P38	P39	P40	Τ	6.08
		P44	P42	P43	P44	P45	P46	P47	P48		6.08
		P49	P50	P51	P52	P53	P54	P55	P59		6.08
		P57	P58	P59	P60	P61	P62	P63	P64		6.26
	C	6.26	6.08	6.08	6.08	6.08	6.08	6.08	6.26	J	
	EFFECTIVE AREA []49.0										

→ Tests were performed at JLab, EEL 126, since September 2012

• We triggered on the pulse that fed the green LED used to illuminate the PMT

- Characteristics of the LED pulse:
 - \rightarrow 20 ns wide

→ amplitude varied from 0.8 V to 4.5 V depending on the goal of the tests

 \rightarrow rate: 2 kHz

• The PMT signal was passed through 10 X amplification

For PMT signal detection we used a charge integrating ADC: 32-cannels
 V792 (we stayed away from the regions of nonlinearities this time:);
 ADC gate = 200 ns

• For data acquisition we used CODA 2.5

\rightarrow The experimental setup has been very stable over the course of 3 months

Example: mean and standard deviation of the pedestal runs taken during the magnetic field measurements over the course of ~2 months

\rightarrow The experimental setup in EEL 126 at JLab

→ The yield of photons produced by the LED has been "chosen" such that the production of single photoelectrons from the PMT photocathode is favored; by varying the LED voltage in small steps we reveal the quantum nature of the process

→ We use a well established PMT response function to extract the **mean** (above pedestal) and the **standard deviation** of the SPE distribution

$$S_{\text{real}}(x) = \int S_{\text{ideal}}(x') B(x-x') \, \mathrm{d}x' = \sum_{n=0}^{\infty} \frac{\mu^n \mathrm{e}^{-\mu}}{n!} \times \left[(1-w) G_n(x-Q_0) + w I_{G_n \otimes E}(x-Q_0) \right]$$

→ Fit extraction of the mean (measured from pedestal) and the standard deviation of the SPE distribution from ADC data corresponding to different LED settings is consistent

→ The yield of photons produced by the LED has been "chosen" such that the production of single photoelectrons from the PMT photocathode is favored; by varying the LED voltage in small steps we reveal the quantum nature of the process

→ We use a well established PMT response function to extract the **mean** (above pedestal) and the **standard deviation** of the SPE distribution

$$S_{\text{real}}(x) = \int S_{\text{ideal}}(x') B(x-x') \, \mathrm{d}x' = \sum_{n=0}^{\infty} \frac{\mu^n \mathrm{e}^{-\mu}}{n!} \times \left[(1-w) G_n(x-Q_0) + w I_{G_n \otimes E}(x-Q_0) \right]$$

→ Fit extraction of the mean (measured from pedestal) and the standard deviation of the SPE distribution from ADC data corresponding to different LED settings is consistent

→ The yield of photons produced by the LED has been "chosen" such that the production of single photoelectrons from the PMT photocathode is favored; by varying the LED voltage in small steps we reveal the quantum nature of the process

→ We use a well established PMT response function to extract the mean (above pedestal) and the standard deviation of the SPE distribution

$$S_{\text{real}}(x) = \int S_{\text{ideal}}(x') B(x-x') \, \mathrm{d}x' = \sum_{n=0}^{\infty} \frac{\mu^n \mathrm{e}^{-\mu}}{n!} \times \left[(1-w) G_n(x-Q_0) + w I_{G_n \otimes E}(x-Q_0) \right]$$

→ Fit extraction of the mean (measured from pedestal) and the standard deviation of the SPE distribution from ADC data corresponding to different LED settings is consistent

SPE Measurements: Quad A

→ The yield of photons produced by the LED has been "chosen" such that the production of single photoelectrons from the PMT photocathode is favored; by varying the LED voltage in small steps we reveal the quantum nature of the process

→ We use a well established PMT response function to extract the mean (above pedestal) and the standard deviation of the SPE distribution

$$S_{\text{real}}(x) = \int S_{\text{ideal}}(x') B(x-x') \, \mathrm{d}x' = \sum_{n=0}^{\infty} \frac{\mu^n \mathrm{e}^{-\mu}}{n!} \times \left[(1-w) G_n(x-Q_0) + w I_{G_n \otimes E}(x-Q_0) \right]$$

SPE Measurements: Quad A

SPE Measurements: Quad A

→ Fit extraction of the mean (measured from pedestal) and the standard deviation of the SPE distribution from ADC data corresponding to different LED settings is consistent

SPE Measurements: Quad B

→ The yield of photons produced by the LED has been "chosen" such that the production of single photoelectrons from the PMT photocathode is favored; by varying the LED voltage in small steps we reveal the quantum nature of the process

→ We use a well established PMT response function to extract the mean (above pedestal) and the standard deviation of the SPE distribution

$$S_{\text{real}}(x) = \int S_{\text{ideal}}(x') B(x-x') \, \mathrm{d}x' = \sum_{n=0}^{\infty} \frac{\mu^n \mathrm{e}^{-\mu}}{n!} \times \left[(1-w) G_n(x-Q_0) + w I_{G_n \otimes E}(x-Q_0) \right]$$

SPE Measurements: Quad B

SPE Measurements: Quad B

→ Fit extraction of the mean (measured from pedestal) and the standard deviation of the SPE distribution from ADC data corresponding to different LED settings is consistent

SPE Measurements: Summary

SPE Measurements: PMT High Voltage Scan

 \rightarrow Keeping constant the yield of photons on pixel (i.e. the LED setting is fixed) we increase the PMT HV – this will boost up the pixels gain

 \rightarrow The boost in gain with increasing PMT HV is clearly seen in our data for all 3 pixels tested

3000

2500

2000

1500

1000

500

150

SPE Measurements: PMT High Voltage Scan

Example: Pixel 45

→ The mean of the Poisson distribution, μ , stays the same with increasing PMT HV (as expected given that the yield of photons illuminating the pixel stays the same) → The number of channels above the PED corresponding to the SPE signal, **mean(SPE)**, increases with increasing PMT HV, i.e. the pixel gain increases and the SPE resolution gets better

H8500C-03 Gain Extraction from SPE Data

 \rightarrow We extract the H8500C-03 gain from our SPE measurements

amplification
gain (model) =
$$\frac{a^{12}}{13^{k*12}} \times V^{k*1}$$

2

 $Q_{ADC}^{per_channel} \times mean(SPE)$

We extract coefficients **a** and **k** from data at -1000 and -1080 V

Our measurements of pixel gain variation agree reasonably well with data provided by Hamamatsu (their measurements were done using large yields of photoelectrons)

Pixel Gain Matching

→ It is well established that the gain of pixels within the same PMT can vary by factor of 2 or more

 \rightarrow Hamamatsu provides a map with pixel to pixel gain variation

→ We have shown that even for sum of pixels (quads) reasonable SPE resolution can be achieved

→ However, if better resolution would be needed matching the gain of all pixels to the lowest output pixel could be the solution

Pixel Gain Matching

→ We used a rotary attenuator to normalize the output of the pixels with higher gains, 45 and 61, to the pixel with lowest gain, pixel 39

0.009

0.008

0.007

0.006

0.005

0.004

0.002F

0.001

0.007

0.006

0.005

0.004

0.003

0.002

0.001

Output from pixel 45 is attenuated by 3 dB

Output from pixel 61 is attenuated by 6 dB

Pixel Gain Matching

Magnetic Field Measurements (a sub-set of data)

→ We quantified the response to magnetic field of 1 central pixel (45), 1 edge pixel (61) and 2 groups of 16 pixels (2 quads)

 \rightarrow We paid special attention to the PMT orientation w.r.t. the direction of the magnetic field: we surveyed the PMT tilt angle w.r.t. the longitudinal and transverse field orientations and ensured that we measure the PMT response to purely transverse/longitudinal fields

Experimental Setup: Magnetic Field Orientations

→We use the same convention as Hamamatsu to label different field orientations:

 B_z – perpendicular to the face of the PMT – longitudinal field B_x and By – perpendicular to the sides – transverse field **B**_

Pictures from Hamamatsu: thanks to Ardavan Ghassemi

H8500C-03 response to longitudinal B_z field: Pixels

H8500C-03 response to longitudinal B_z field: Quads

H8500C-03 response to longitudinal B_z field: Summary

→ "Relative output" represents the mean of the ADC distribution at a given field value normalized to the mean of the ADC distribution at "zero" field value

→ The yield of photoelectrons at "zero" field value is ~ 40-50

→ Edge pixel experience a greater loss in field than central pixel while quads (sum of pixels) are somewhere in between

→ There is a pronounced drop with field of the relative output up to ~80 gauss; beyond that loss of signal remains constant up to 300 gauss

H8500C-03 response to transverse B_x field: Pixels

H8500C-03 response to transverse B_x field: Quads

H8500C-03 response to transverse B_x field: Summary

→ "Relative output" represents the mean of the ADC distribution at a given field value normalized to the mean of the ADC distribution at "zero" field value

→ The yield of photoelectrons at "zero" field value is ~ 40-50

 \rightarrow Edge pixel behave ... strange

➔ There is a pronounced drop with field of the relative output all the way up to 300 gauss

H8500C-03 response to transverse B_v field: Pixels

H8500C-03 response to transverse B_v field: Pixels

H8500C-03 response to transverse B_y field: Summary

→ "Relative output" represents the mean of the ADC distribution at a given field value normalized to the mean of the ADC distribution at "zero" field value

➔ The yield of photoelectrons at "zero" field value is ~ 40-50

→ Edge pixel behave ... strange

➔ There is a pronounced drop with field of the relative output all the way up to 300 gauss