SoLID Simulation and Baffles

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu

December 14, 2012

- Latest in Baffles
- Simulation
- To do list

Photon Leak

- Pretty much the same as before
- FoM about the same too

- Includes full lead geometry, all detectors, beamline
- Rates a bit worse on LD₂, weaker magnet

Low EM Background Origin, Lead Baffled

e Rate [kHz] on LD, I=50 μ A

	Proposal (LH_2)	Now (LD ₂)
All DIS	110 kHz	532.8 kHz
$W>2~{ m GeV},~x>0.20$	110 kHz	425.1 kHz
$W>2~{ m GeV},~x>0.55$	12 kHz	20.7 kHz
$W>2~{ m GeV},~x>0.65$	3 kHz	5.0 kHz

π^{-} Rate [kHz] on LD, I=50µA

	Proposal (LH_2)	Now (LD_2)
All <i>pi</i> ⁻ D	-	176.5 MHz
π^- D, $p > 0.3~{ m GeV}$	140 MHz	128.9 MHz
π^- D, $p > 1.0 { m ~GeV}$	70 MHz	85.5 MHz
π^- D, $p > 2.0 \text{ GeV}$	8 MHz	16.5 MHz

PVDIS π /e LD₂

One PVDIS Background Event - No Deconvolution

One PVDIS GEM Event - Deconvoluted

		 SIDIS		
PVDIS		Cham	N. Strip	
Cham	N. Strip	1	16.8	
1	316.5	2	62.4	
2	303.6	3	33.6	
3	282.8	4	28.9	
4	279.6	5	27.0	
_		 6	25.5	

Resolution Studies from Rich

• Uses form for momentum fit and find coefficients with perfect resolution, no multiple scattering:

$$f\left(\frac{dr}{dz},R\right) = \sum_{i=0}^{3} \left(a_i + b_i \frac{dr/dz}{R}\right) (dr/dz)^i$$
$$p = \left[\frac{d\phi}{dz} f\left(\frac{dr}{dz},R\right)\right]^{-1}$$

- Finds most combinations of layers give better than 1% momentum resolution, proposal limit is 3%
- Has draft writeup which should go on the wiki

- Simulation should be at a good point no new real work needed I think
- Baffles section figures in place. Just need to put down the words
- Baffles cost analysis needs to be done scaling from BigBite sieve
- Simulation needs a few nice pictures made and summary needs to be written

Generators

- Radiative effects, need to enumerate needs
- π asymmetry
- F_2 inelastic for lower Q^2 , resonance data fits by Bosted on LH_2 and LD_2
 - Written, just need to be implemented
- Hyperon decay
 - Working on with Konrad Aniol
- Resolution studies
 - Progress from Rich

- Review/clean up GEM digitization, double check multisampling filtering
 - Should be good to go
- Cerenkov and calorimeter need similar framework developed
 - Michael Paolone?
- Charged flux through PMT glass in GEMC based on background rates
- Need to evaluate pileup/digitization in full background simulation
- Need to look at pion asymmetry effects in pion-sensitive detectors
- Low energy pions in Ecal and their response
- Response to electromagnetic background in calorimeter