SoLID Magnet Update

Zhiwen Zhao (UVa), Paul Reimer (ANL),

Many Thanks to Eugene Chudakov, Xin Qian, Jian-Ping Chen, Whit Seay, Robin Wines, Javier Gomez, Will Oren, Rolf Ent

SoLID Collboration Meeting 2012/12

Requirement
Magnet Choice
CLEO
BaBar

> Summary

- General
 - Large acceptance and high luminosity
 - Solenoidal magnet leaves large room for detectors and swipes away low energy background downstream.
 - Hall A beam line height 3.05m (10 feet)

SoLID Collaboration Meeting 2012/12

- PVDIS (22-35°, e⁻)
 - The target can be placed within solenoid
 - Solenoid radius needs to be 1-2m. Small radius will make the target is too close to magnet exit and not enough room for baffle.
 - field > 1T to ensure enough defection of 2-6GeV with 1-2m so that baffle can be made with not too small segmentation

- SIDIS (8-24°, e⁻ and hadron)
 - Both polarized targets need to be outside of field and the fringe field for SIDIS-3he < 30G
 - Forward angle detectors need enough distance for tracking, Cherenkov, TOF and calorimeter. A Solenoid needs to be 3-4 m long for tracking and it can't be too long to reduce forward angle detectors acceptance and thus limit the hadron detection.
 - Large angle detectors need small distance so it won't exceed beamline height limit. Therefore it has to stay within solenoid, the solenoid radius needs to be 1-2m to accommodate detectors.

5

- J/ψ (8-26°, e⁻, e⁺ and p)
 - Similar to SIDIS
 - Small field will help low energy scattered e- acceptance at forward angle

Magnet Choice

- CLEO/BaBar alike: 1.4m radius, 3.5m length
 - Large enough inner radius
 - Medium field 1.5T and medium length

Magnet Choice

- Shorter magnet: 1.4m radius, 1.75m length
 - PVDIS should be ok after move target further upstream.
 - SIDIS forward tracking need stronger field 2-3T.
 - SIDIS target needs to be further away due to larger fringe field. This in turn will reduce large angle coverage.
 - Combining SIDIS forward and large angle won't help.

Magnet Comparison

	BaBar	CLEO	ZEUS	CDF	Glue-X	Other	
Cryostat Inner Rad	142 CM	145 cm	86 cm	150 cm		ed	
Length	345 cm	350cm	245cm	500 cm		ne	
Cent Field	1.49T	1.5T	1.8T	1.47T		e l	
Yoke Aval?	Yes	Yes	No	No		er W	
Variation in Current density with z?	Current Density in central 50% is ½ that in end 25%	Current Density in central 50% is 1/1.04 that in end 25%	Current density 25% more current at ends	No	Yes	Whateve	
Amp- Turns	5.1 M A-T	4.2 M A-T					
Available	Yes	Yes	Probably Not Mainz	Needs \$1M repair and possible Expt at Fermilab	Perhaps	\$8M??	

CLEO

- CLEO-II magnet was built in early 1980s by Oxford in England.
- Coil is divided into 3 sections, each section has two layers
- Coil total 1282 turns. Upstream: 166; Central: 309; Downstream: 166 turns per layer. The current density in the end sections is 4% higher than in the middle section.
- Max current is 3266A and average current density of 1.2MA/m, this reach 1.5T field

Fig. 2. Schematic Drawing of one quadrant of the CLEO II detector. The following acronyms are used – DR, VD, PTL: The out intermediate and inner drift chambers. TF, CC, MU: The time-of-flight counters, crystal calorimeter and muon identification system. Profiles Bedrah Bratentrap leeting 2012/12

- Barrel flux return is provided by 3 layers of iron separated by spacers
- It's in octagon
- 2 collars supports barrel irons and holding 4 coil rods in horizontal direction.

From CLEO-II to SoLID (reused parts)

• Take two layers of barrel yoke and spacer, keep the upstream ends unchanged, cut the downstream ends (75cm) to our need.

 Take the upstream collar unchanged, and cut the downstream collar or make a new one to satisfy the acceptance requirement. Make sure the coil
 rods can still be supported by two collars under axial force

600

• All other parts of yokes are new.

From CLEO-II to SoLID (new parts)

SOLID CLEO Acceptance

SoLID CLEO Field

dB

dB

- CLEO-II can still reach 1.48T Bz
 - SoLID CLEO only reaches 1.38T Bz, due to large opening and asymmetric yoke design. Unlikely CLEO-II can run higher current (?)
- The iron of the endcap nose could be saturated with >2T field.
- The radial field Br can reach a few 1000G where PVDIS GEM plane 1 and 2 are.
- The field drops to a few 100G in endcap. They are <200G where Cherenkov readout is.

SoLID CLEO Force on coil

unit in t	upstream	middle	downstream	total			
inner 2piFz	154.1	3.6	-159.1	-1.4			
outer 2piFz	154.7	3.5	-159.6	-1.4			
Total 2piFz	308.8	7.1	-318.7	-2.4			
inner Fr/radian	87.9	170.2	87.2	345.3			
outer Fr/radian	24.8	54.5	24.2	103.5			
Total Fr/radian	112.7	224.7	111.4	448.8			
 Axial force on coil and cell cylinder are squeezing from both sides and it can be balanced under 10t. could leave some net force to avoid accidental force direction change. Preferred direction is negative so upstream collar (unchanged from CLEO-II) can take the force (?) Moving the front piece in z to adjust force (moving upstream, the positive force increase, vice verse.) with gradient 3-5t/cm (It's very sensitive) Radial force are on the Aluminum shell cylinder From Eugene "If all the force goes to the shell, the azimuthal tension is about 30MPa. The yield limit of aluminum is about 100MPa (to be verified for 4°K)" 							
200		$ \begin{array}{c} \overleftarrow{} \overrightarrow{} $					
-600 -500 -10	00 -300 -200 Z:\HOME\ZWZHAQ\SQL1D\	-100 0 100 FIELD\CLEOV8 7\CLEOV8.AM 7-2	200 300 40 0-2012 10:38:48	00 500 600			

SoLID CLEO Force on yoke (axial force only)

600

- 2piFz (unit in t) represents the axial force integrated over the whole part in 2pi.
- positive direction in black, negative direction in Red
- The opposite force meets at two locations where the endcup connects.
- Some analysis of potential problems with the coil and yoke mechanical integrity should be done.
 - no calculation of the radial force yet.

So

SoLID CLEO: FEA study of axial force

• Static weight are ignored for now.

Maximum Von Mises stresses on the model

Maximum Von Mises stresses do not exceed <u>1500 psi</u>. (magnetic axial forces only) Allowable yield stress 1006 steel is 24000 psi. Maximum deflection is 0.011" = 0.2794mm where region 15 and 16 meet. Maximum shear was approximately 750 psi and acceptable. (not shown)

by Whit Seav

SoLID CLEO Yoke weight

SoLID CLEO: Fringe field at SIDIS pol He3 target location

	Z (cm)	Bz(G)	Br(G)	dBz/dr (mG/cm)	dBr/dz (mG/cm)	dBz/dz (mG/cm)	dBr/dr (mG/cm)	
ID CLI	-330	46.1	0.7	40	40	1500	744	
	-350	27.3	0.3	12	12	500	288	
0 —	-370	19.1	0.1	4	4	300	142	
•	The dista pol He3 We need	ance betw holding fie addition	een first s eld is 25G al shieldin	hielding plat and we need g or correction	to the targ d field gradie on coil.	get coil is a nt below	a few cm. 100mG/cr	n
- 2 LC	ol He3 targe Helmholtz ongitudinal f ertical R=66.	t coils R=75.8cm .7cm		$\begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & \\ & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & & & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & & & & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & & & & & & & & & \bullet & \bullet & \bullet & \bullet & \bullet &$				-
-600	-500	- <u>40</u>	-200	$ \begin{array}{c} \rightarrow \rightarrow$	$ \rightarrow \rightarrow$	300 100	500	600

SoLID CLEO: Fringe field at SIDIS pol He3 target location (with correction coil)

SoLID CLEO summary

- We have a preliminary design
- It can be improved with more input from engineering
- Some barrel yoke are reused, no problem to fit with Hall A beamline height.

Study by Eugene Chudukov

https://userweb.jlab.org/~gen/jlab12gev/cleo_mag

SoLID Collaboration Meeting 2012/12

BaBar

- The magnet was built in 1990s by Ansaldo Energia in Italy
- Its setup has 9GeV e⁻ come from left, 3.1GeV e⁺ come from right
- Yoke is in hexagon shape

	Length (mm)	Radius (mm)
Coil	3513.5	1509.8 – 1550.6
Cryo	3850	1420 -1770
Barrel flux return	3750	1820 - <mark>3041</mark>
Side plate	3750	1902.5 – 3290.5
Support ring	328	3100 - 3728.4
Flux bar (barrel)	200	3041 - 3209
Upstream flux return	1144	1020 - 2859
Downstream flux return	1144	710/1564 - 2859
Gap plate	150	1820 - 3209
Flux bar (door)	1144	2859 - 3209

Fig. 2. BABAR detector end view.

Coil

- Radius 1509.8 1550.6mm
- Length 3513.5mm,
- 3 sections, middle is twice long as each of two ends.
- Turn 1067, double layer
- For 1.5T field, run with 4596A, total 4903932A. this is nominal operation current.
- For 1.58T field, run with 4826A, total 5149342A. This is tested operation current.

Need more info from BaBar

- Can it run higher current?
- How is the coil supported? By the 6 poles in Cryo?

Cryo

- Use thermosyphone, chimney at upstream end
- Chimney radius 2145mm
- Length 3850mm, 80mm longer than CLEO 3870mm
- Outer radius 1770, 10mm larger than CLEO 1760mm

Fig. 13. A portion of cryostat assembly. The forward end is shown. Legend: (A) evacuated spaces filled with IR-reflective insulator; (B) superconducting coil (2-layers); (C) aluminum support cylinder; (D) aluminum heat shield; (E) aluminum cryostat housing.

SoLID BaBar

New Parts in solid color

Old parts in boxes

- Polar angle acceptance are similar to CLEO
- May use BaBar barrel flux return after removing the most outer layer.
- May use BaBar upstream and downstream flux return as partial SoLID front piece and endcap. How much change is needed?
- The bottom of various support structures need cut to fit Hall A beam line height

- Steel density is 7.9g/cm3, weight unit is in metric t
- SoLID BaBar could save about 92t iron. Assume machined steel cost \$4.5/lb, total

500

500

400

SoLID BaBar summary

- The initial look shows that BaBar can be used for the same physics.
- It can be improved with more input from engineering and more info from BaBar
- It could reuse more yoke than CLEO, which means potential savings.
- The modification cost could be significant though.

SoLID Collaboration Meeting 2012/12

Summary

- Our default design is based on CLEO
- BaBar could be alternative
- Cost difference needs more input from engineering.

