Update on SoLID Track Reconstruction

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting March 22, 2013

TreeSearch Reconstruction Algorithm

- Global recursive template matching
- Pros
 - Efficient. High speed: $O(\log N)$. Small memory footprint: O(10 MB)
 - No seed point needed
 - Available in Hall A analyzer
 - Successfully used with BigBite data and SBS simulations
- Cons
 - May not fully solve the problem: requires (nearly) straight tracks
 - Allowing for small track curvature adds complexity
 - Code must be adapted to SoLID geometry

Track Reconstruction Simulation

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape simulated
 - Ad-hoc noise simulation (random time offset)
 - No other detectors digitized yet
 - Partial passthrough of generated data (tracks, vertices)
- ROOT file interface
- Tracking

TreeSearch Track Reconstruction Chain (GEM version)

Code & Algorithm Modifications Made for SoLID

- Support SoLID geometry
 - Decoder for simulation output
 - Support detector positioning in cylindrical coordinates
 - Cut on non-rectangular active detector area
 - Particular difficulty: Chambers may have angular an offset!
- Make all sectors appear as one spectrometer, not 30 separate ones
 - Automatically supported in C++ analyzer, but could be more efficient
- Note yet done: Allow for (small) track curvature in 2D and 3D fits
 - Need efficient algorithm
 - Implement parameter range limits
 - Stability?

GEM Chamber Strip Layout (illustration from Nilanga)

- Strips in different planes MUST be parallel for TreeSearch.
- If chambers in different planes have angular offsets, then strips must be rotated wrt chamber frame in the offset planes. (Sorry, no picture.)
- Probably don't want to manufacture GEM chambers with rotated strips!
- If chambers are to have angular offsets, and GEM chambers are to have strips as shown above (not rotated), then the tracking algorithm must be able to handle non-parallel strips in different planes. Not impossible, but harder.

SoLID Track Reconstruction: 1st attempt

- "Ultra-clean" input data
 - Muons, no field
 - Electrons, with field (not yet analyzed)
 - Very limited materials (basically only the trackers)
 - No background from target
- Full reconstruction chain
- Standard cuts
 - Require 3/4 hits per coordinate
 - Allow 1 missing amplitude correlation
 - Accept wide χ^2 range for fits (up to about 10/dof)

MC input data: tracks, hits (All plots are for "muons, no field")

Momentum of interacting particle

Number of hits per event, expect \approx 4 (= no. of planes)

MC Secondaries

Momentum vs type \rightarrow secondaries have very low p

PID vs type \rightarrow secondaries are mostly e^-

Digitization

Cluster size, v-coordinate ($\neq u \rightarrow BUG$?)

Decoding & Clustering

Reconstructed hit position accuracy \approx 70 μm

Track Reconstruction

solid.tr.n htemp Entries 232879 Mean 0.2469 180 RMS 0.4313 160 140 120 100 80 60 40 20 2.2 1.2 14 16 solid.tr.n

Number of tracks found: $\approx 35\%$ efficiency (173k MC tracks)

Track x-coordinate residual \rightarrow BUG? solid.tr.x-MC.btr.x {abs(solid.tr.x-MC.btr.x)<.02} htemp Entries 56150 14000 Mean .8 932e-06 RMS 0.004394 12000 10000 8000 6000 4000 2000 0 solid.tr.x-MC.btr.x

Reconstructed track coordinates at first GEM plane

Observations

- It works!
- Digitization still has problems
 - Time offset for trigger tracks
 - Small cluster size
- Fairly low tracking efficiency, but not surprising given still un-optimized items:
 - Digitization
 - Detector and GEM strip alignment
 - Reconstruction parameter tuning (many available)
- Track residuals look really "interesting". Bug? Alignment problems?

Next Steps

- Address obvious problems from previous slide. Should really get close to 100% tracking efficiency.
- Analyze "electrons with field" to study effect of track curvature
- Simulate realistic conditions
 - Add all materials
 - Add background
 - Add vertex reconstruction
- With full realistic simulation, get estimates for
 - Tracking efficiency
 - Vertex resolutions
 - Ghost & clone track rate
 - Computing performance

Backup Slides

APV25 Pulse Shape Deconvolution & Noise Filtering

S. Gadomski et al., NIM A 320, 217 (1992)

 For first-order RC circuit, signal amplitudes sk can be deconvoluted using three measured values vk:

$$s_k = w_1 v_k + w_2 v_{k-1} + w_3 v_{k-2}$$

$$w_1 = e^{x-1}/x, w_2 = -2e^{-1}/x, w_3 = e^{-x-1}/x, \text{ where } x = \Delta t/T_p$$

$$A \approx \sum_{k=1}^3 s_k$$

• Reject noise by cutting on ratios, $r_1 = v_3/v_1$ and $r_2 = v_2/v_1$, requiring rising slope

GEM Hit Clustering

- Signals on adjacent readout strips typically belong to a single track crossing
- Sum signals to get
 - Total hit amplitude
 - Charge-weighted position centroid
 - Currently use simple algorithm:
 - Look for local peak
 - When sequence "peak-valley-peak" is seen, split cluster at "valley"
 - Regardless of shape, limit clusters to a maximum size
 - Improvements
 - Match hits by their pulse shape, i.e. timing centroid
 - Redo clustering after preliminary tracking (e.g. better cluster splitting)
 - ... possibly more
 - *NB:* Clustering does not necessarily have to be separate from tracking, could be integrated into a progressive tracking algorithm

