KINEMATICS FROM GEM HITS FOR PVDIS

Rich Holmes March 2013 SoLID Collaboration Meeting

WHAT CAN WE LEARN ABOUT RESOLUTION AND CALIBRATION FROM FOUR NUMBERS?

- Trajectory determined by vertex (x_v, y_v, z_v) and momentum (p, θ, ϕ) . $x_v, y_v \approx 0$.
- Hits in 2 GEM chambers give 4 quantities x1, y1, x2, y2
- Can we invert the mapping? Yes, if we parameterize with the right combinations of x1, y1, x2, y2.

PARAMETERS

In x-y plane:

 $r_i = \text{length of 2-vector } r_i$ from vertex to hit i D = distance between hits $\alpha = \text{angle between vectors}$

Others (not illustrated) $<r> = (r_1+r_2)/2$ $\Delta r = r_2-r_1$

(and so on)

PARAMETERS

Uniform field: Trajectory in x-y plane is a circular arc of radius $\rho \alpha$ pT

 $1/\rho \approx (\psi + \delta)/(r_1 + D) \approx 2\alpha/D$

tan $\theta \approx D/\Delta z$ ($\Delta z = z_2 - z_1$, distance between GEM planes)

 $z_1-z_v \approx \Delta z r_1/D$

Approximations hold for small angles.

PARAMETERS

Realistic field:

 $I/p_T = k\alpha/D(I + F_{\rho}(...))$

 $\tan \theta = D/\Delta z (1 + F_{\theta}(...))$ $(\Delta z = z_2 - z_1, \text{ distance between } GEM \text{ planes})$

 $z_1 - z_v = \Delta z r_1 / D(1 + F_z(...))$

PVDIS geometry, 1 st 2 GEMs (inside magnet) Red points: Uniform field Blue points: Realistic field

Red points: Uniform field Blue points: Realistic field

Momentum correction F_{ρ} is not a function of α .

RESOLUTION

- Calibrate by fitting against truth values to obtain F_{ρ} , F_{θ} , F_z
- Using these reconstruct p, θ , z and compare to truth values
- Resolution (using MC with target, window, GEM materials):
 - p: 0.86% Q²: 1.23%
 - **θ**: 0.36% ×: 0.71%
 - z_v: 7.8 mm

CALIBRATING REAL DATA

- For real data we have no truth values; how do we calibrate?
- Elastics: p is correlated with $\boldsymbol{\theta}$
- θ calibration is not very sensitive to details of B field

Red points: Uniform field Blue points: Realistic field

CALIBRATING REAL DATA

- Use MC (field map accurate to 1%) to get θ calibration
- Use θ calibration and elastic data to get p calibration
- This has been demonstrated using e.g. (90% CLEO + 10% uniform) field MC to stand in for real data

SUMMARY

- Hits in 2 GEM chambers can be used to reconstruct scattering kinematics
- Resolution with multiple scattering and detector resolution is <1% for p, <0.5% for θ
- θ can be adequately calibrated with MC; p can then be calibrated with elastic data