SoLID Magnet Update

Zhiwen Zhao (UVa), Paul Reimer (ANL)

SoLID Collboration Meeting 2013/03

CLEO

- CLEO-II magnet was built in early 1980s by Oxford in England.
- Coil is divided into 3 sections, each section has two layers
- Coil total 1282 turns. Upstream: 166; Central: 309; Downstream: 166 turns per layer. The current density in the end sections is 4% higher than in the middle section.
- Max current is 3266A and average current density of 1.2MA/m, this reach 1.5T field

CLEO

- Barrel flux return is provided by 3 layers of iron separated by spacers
- It's in octagon
- 2 collars supports barrel irons and holding 4 coil rods in horizontal direction.

Will Oren visited Cornell

SoLID Collaboration Meeting 2013/03

From CLEO-II to SoLID (reused parts)

100

200

100

500

600

300

-100

-3'00

-2'00

-1'00

Z:\HOME\ZWZHAO\SOLID\FIELD\CLEOV8_7\CLEOV8.AM 7-20-2012 10:38:48

-6'00

-5'00

From CLEO-II to SoLID (new parts)

Cut the donut (15cm thick, 276cm long) out of the outer layer (46cm thick, 533cm long)

PVDIS target requirement

Field

SoLID Collaboration Meeting 2013/03

- The field change is small within solenoid
- Need to strictly the fringer field at SIDIS target

Summary

- To use the extra iron or not is more or less a cost question.
- Fringe field can be tuned (correction coil alike), need more time.
- More advanced software like TOSCA to do further work
- More input from CLEO people will help fine tune things. We need to gather more info from them.
- Iteration with engineering.

backup

SOLID CLEO Acceptance

SoLID CLEO Field

- CLEO-II can still reach 1.48T Bz
- SoLID CLEO only reaches 1.38T Bz, due to large opening and asymmetric yoke design. Unlikely CLEO-II can run higher current (?)
- The iron of the endcap nose could be saturated with >2T field.
- The radial field Br can reach a few 1000G where PVDIS GEM plane 1 and 2 are.
- The field drops to a few 100G in endcap. They are <200G where Cherenkov readout is.

SoLID CLEO Force on coil

unit in t	upstream	middle	downstream	total				
inner 2piFz	154.1	3.6	-159.1	-1.4				
outer 2piFz	154.7	3.5	-159.6	-1.4				
Total 2piFz	308.8	7.1	-318.7	-2.4				
inner Fr/radian	87.9	170.2	87.2	345.3				
outer Fr/radian	24.8	54.5	24.2	103.5				
Total Fr/radian	112.7	224.7	111.4	448.8				
 Axial force on coi could leave Preferred o Moving the with gradie 	 Axial force on coil and cell cylinder are squeezing from both sides and it can be balanced under 10t. could leave some net force to avoid accidental force direction change. Preferred direction is negative so upstream collar (unchanged from CLEO-II) can take the force (?) Moving the front piece in z to adjust force (moving upstream, the positive force increase, vice verse.) with gradient 3-5t/cm (It's very sensitive) 							

- Radial force are on the Aluminum shell cylinder
 - •From Eugene "If all the force goes to the shell, the azimuthal tension is about 30MPa. The yield limit of aluminum is about <u>100MPa</u> (to be verified for 4°K)"

300

SoLID CLEO Force on yoke (axial force only)

600

- 2piFz (unit in t) represents the axial force integrated over the whole part in 2pi.
- positive direction in black, negative direction in Red
- The opposite force meets at two locations where the endcup connects.
- Some analysis of potential problems with the coil and yoke mechanical integrity

should be done.

So

• no calculation of the radial force yet.

SoLID CLEO: FEA study of axial force

• Static weight are ignored for now.

Maximum Von Mises stresses on the model

Maximum Von Mises stresses do not exceed <u>1500 psi</u>. (magnetic axial forces only) Allowable yield stress 1006 steel is 24000 psi. Maximum deflection is 0.011" = 0.2794mm where region 15 and 16 meet. Maximum shear was approximately 750 psi and acceptable. (not shown)

by Whit Seay

SoLID CLEO Yoke weight

SoLID CLEO: Fringe field at SIDIS pol He3 target location

	Z (cm)	Bz(G)	Br(G)	dBz/dr (mG/cm)	dBr/dz (mG/cm)	dBz/dz (mG/cm)	dBr/dr (mG/cm)
:D СLI	-330	46.1	0.7	40	40	1500	744
	-350	27.3	0.3	12	12	500	288
	-370	19.1	0.1	4	4	300	142
•	The dista pol He3 We need	ance betw holding fig addition	veen first s eld is 25G al shieldin	shielding plat and we need g or correcti	e to the targ d field gradie on coil.	et coil is a nt below	a few cm. 100mG/cn
Pc 2 Lc	ol He3 target Helmholtz o ongitudinal F	t coils R=75.8cm 7cm		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Ve	ertical R=66.			$\rightarrow \rightarrow $			

SoLID CLEO: Fringe field

at SIDIS pol He3 target location (with correction coil)

	Z (cm)	Bz(G)	Br(G)	dBz/dr (mG/cm)	dBr/dz (mG/cm)	dBz/dz (mG/cm)	dBr/dr (mG/cm)	
SoLID CL	-330	-0.4	0.11	42	42	170	-106	
	-350	1.6	0.05	7	7	-100	54	
600 —	-370	0.8	0.08	4	4	164	-81	
500 - • 100 - •	Add a pai current -3 No effect Both field It can be	ir correctio 3465A and on the for and field tweaked fu	n coil at th -645A ce on soler gradient ar urther and	e same pos noid coil re reduced there can b	sition of lo be other id	ngitudinal (eas.	coil with	
300 - PC 200 - PC 2 LC	ol He3 target Helmholtz co ongitudinal R ertical R=66.7	oils =75.8cm 7cm						
0 -600	-500 -	10 300 1 HOME	-200 SOLID ETAN ZWZHAO\SOLID\FIELD	aboratio \cLEov8_8\CLEov8.A	p102013/03 200 A 7-20-2012 16:4	300 104 1:58	0 500	<u>39</u> 0

SoLID CLEO summary

- We have a preliminary design
- It can be improved with more input from engineering
- Some barrel yoke are reused, no problem to fit with Hall A beamline height.

Study by Eugene Chudukov

https://userweb.jlab.org/~gen/jlab12gev/cleo_mag

