Update on EM Calorimeters

Calorimeter Group

SoLID EM Calorimeter Overview

3 - 6

~20

SIDIS Large-Angle 17-24

SoLID Collaboration Meeting, May 2013 2

None

~5

Module Design @ last meeting

Updates since last meeting

- Last time reported SPD, PID&trigger results for SIDIS FAEC including background. Today:
 - → SPD for SIDIS FAEC: 60 azimuthal, 2 radial (85 → 127cm, 127 → 240cm), providing 5:1 γ rej
 - SIDIS LAEC performance w/ SPD;
 - PVDIS: there have been several background updates (see baffle talk), PID and trigger performance with the latest baffle design;
 - PVDIS EC performance impact on DAQ.
- Considering Multi-Anode PMT for Preshower and SPD

Updates on total EC cost estimate

March meeting – SIDIS FAEC PID w/ background

SoLID Collaboration Meeting, May 2013 5

March meeting – SIDIS FAEC Trigger w/ background

March meeting – Hexagon Calorimeter PionTrigger Efficiency π efficiency with cut

- Trigger cut: HEX1+6 trigger raw signal > 85% MIP (which is MIP $- 2\sigma = 220$ MeV calibrated)
- Background passes this cut: rate
 ~20MHz, dominated by photon.
- With a 5:1 photon suppression from SPD, we get ~4MHz total trigger rate, which fit in the DAQ limit (PR12-10-006)
- Will join global DAQ study for final verification

SIDIS LAEC Background Components

SIDIS LAEC PID with background, inner R

SoLID Collaboration Meeting, May 2013 10

SIDIS LAEC PID with background, inner R

SPD for SIDIS LAEC

SoLID Collaboration Meeting, May 2013 12

PVDIS Performance with Background Using the Latest Baffle Design with CLEO Magnet

SoLID Collaboration Meeting, May 2013 13

March meeting – PVDIS PID w/o background

SoLID Collaboration Meeting, May 2013

14

PVDIS background, Mid-R, High-rad ø slice

PVDIS PID with background

pion efficiency

with DC component removal PS $6+1 > MIP + Bgd + (2-3) \sigma$ SH 6+1>1.6 GeV

electron efficiency

Inner radius, higher $\gamma \phi$ -band PS-E/p cut efficiency 0.100.94 0.08 0.92 0.06 0.90 0.88 0.04 0.86 ¥ 0.02 ₩ 2.5 3.5 4.5 5.5 6.5 5 6 Momentum (GeV) Inner radius, lower $\gamma \phi$ -band /p cut emclency 0.10 0.96 0.08 0.06 0.94 ¥ 0.04 ¥ 0.92 0.02 ¥ ₩ 0.00 2.5 4 5 6 7 p(GeV)3 5 6 p(GeV)4 Jefferson Lab

SoLID Collaboration Meeting, May 2013 16

PVDIS PID with background – does it meet the Physics requirement?

- Using March CC talk, at 20deg, 2GeV/c, pi/e=200. CC provides 1000:1 rej w/o bg (worse if w/ bg). If EC provides 10:1 then pion contamination in e- samples would be 2% in offline analysis.
- Main conclusion #1: Using 6+1 cluster sum isn't enough, must store all FADC waveforms to improve PID (factor of 10 expected using 4ns vs. 50ns timing);
- Main conclusion #2: Pion asymmetry needed, must have clean pion trigger/events (very low electron contamination). Pion rate needed ~ ¼ of e- rate (estimated using 5% contamination, pion asym measured to 1%, causing 0.05% syst uncertainty in Apv)

PVDIS Trigger with background

SH 6+1>1.6 GeV (corresponds to 2 GeV electrons)

PVDIS Trigger with background

SH 6+1>2.1 GeV (corresponds to 2.5 GeV electrons)

pion efficiency

electron efficiency

PVDIS Trigger with background – Adding Preshower?

- Shower cut: 6+1 cluster > 1.6 GeV
- Preshower cut: central block > 1 MIP + 1σ

р		2 GeV	8 GeV
mid R, high-rad	pion rej	~10:1	~3:1
\$\$\phi\$ region\$\$	e- eff.	95%	~98%
inner R, high-rad	pion rej	~10:1	~3:1
	e- eff.	90%	~98%

electron efficiency too low! → can't use Preshower in trigger

Current PVDIS Trigger Design

- EC trigger will use Shower cut only: 6+1 cluster>1.6 GeV
- Use EC+CC for electron trigger
- Use $EC+\overline{CC}$ for pion trigger, but must be with prescaling (up to 100), see next page

How to Form PVDIS Trigger to meet DAQ Needs?

- Trigger rate limit is ~60kHz/sector (total 30 sectors) from DAQ group
- Our expected DIS e- rate is 4-8kHz/sector, and assuming we need the same pion rate to extract pion asymmetry. This leaves 40kHz of pion contamination in e- trigger.
- Electron trigger: If pi/e=100, pion rejection must be >20:1. Since EC provides only 2:1 (inner radius) to (5-10):1 (outer radius), need CC to provide at least 10:1 rejection – Can CC provide this (with full background) at the trigger level?

 Pion trigger: with 400-800kHz/sector raw pion rate, prescaling of 100 is necessary.

Jefferson Lab

PVDIS Radiation Dose

- · Photon (EM) ← dominant!
- Photon (Pi0)
- · Electron
- · Pion- Pion+ Proton

PVDIS Radiation Dose – Impact on fibers?

- Dose expected: (20-40) krad/month
 - (80-160) krad for PVDIS 120 PAC days
- WLS fibers light loss:
 - ♦ Kuraray 10% loss (per meter?) @100krad \rightarrow 30% @700krad;
 - ◆ St. Gobain 15% loss @ 100krad \rightarrow 50% @ 700krad.
- Assuming 50% light loss, effect on PID is minimal as long as we calibrate the photon yield during running.

WLS Fiber radiation hardness

Table 1

Optical properties of each type of WLS fibers before the irradiation. Average light output at 140 cm and RMS, average attenuation length (L_{att}) and RMS, for ten fibers of each type. The values are normalized to I_{140} of the Y11(200)MSJ fibers

Fiber type	I_{140}	RMS (%)	L _{att} (cm)	RMS (%)
BCF91A MC	0.98	9.6	280	9.5
Y11(200)MSJ	1.00	1.8	280	1.6
S250-100	0.81	5.7	230	5.6

Table 2

Relative light output at x = 140 cm, for total doses of 1.16 and 6.93 kGy

Fiber type	$\frac{R(140)}{R(30)}$ for 1.16 kGy		$\frac{R(140)}{R(30)}$ for 6.93 kGy			
	0 days	1 day	10 days	0 days	1 day	10 days
BCF91A MC Y11(200)MSJ S250-100	0.83 0.87 0.60	0.86 0.92 0.70	0.85 0.91 0.81	0.54 0.71 0.52	0.56 0.72 0.55	0.56 0.74 0.64

SoLID Collaboration Meeting26SoLID Collaboration Meeting, May 201326

Budget Estimate Update

Budget @ January Meeting

	Per module cost (\$)	All module cost (I	M\$)
Module material	700(L)/250(S)	1.26	
Module production	800(L)/500(S)	1.49	5.8M, to be
Clearfiber	260(L)/65(S)	0.46	compared
Fiber connectors	150	0.27	to next
PMTs	600*2	2.34	clido
Labor	5 tech and 5 student years	1.3	Silde
Total		7.12	
Total+30% contingency		9.26	

- + Prototyping ~ 0.3 M\$
- + Support ~

Budget @ March Meeting

- IHEP (not including fibers) for 1700 PS+SH
 - Preshower: \$112k-\$120k
 - Shower: \$549k-\$651k
 - Structure+assembly: \$255k-\$340k
 - IHEP total: (\$1.22-\$1.51)M + 24% overhead (2012 rate) = (\$1.51-\$1.87)M
- Fiber connectors+tubing (Leoni+other): ~\$300k
- WLS+clear fibers(?): \$703k (S.G.) \$2.47M (Kuraray)
- PMTs: \$600x2x(~1900)=\$2.28M
- Total from above (no contingency): <u>(\$4.8M-\$5.2M</u>) if using S.G.; \$(6.6-7.0)M if using Kuraray

Labor? Shipping? Contingency?
 Jefferson Lab
 Sol

Cost Update – Status

- No quote yet for SPD
- No quote yet for Shower fiber mirrors (IHEP)
- Updated fiber cost with diamond-tool cutting (do not know yet if IHEP can cut the fibers)
- PMT cost with quote

Fiber Cost Update

	March 2013	May 2013 (fiber alone)	May 2013 (diamond-tool cutting)	
S.G. WLS	\$203k	\$203k	\$240k	
S.G. Clear	\$500k	\$574k (longer)	\$208k	
Total	\$703k	<u>\$777k</u>	\$448k \$1,2	225k
Kuraray WLS	\$787k	\$573k		
Kurary clear	\$1,681k	\$1,091k (shorter)		
Total	\$2,468k	\$1,664k		

PMT Cost Update

- March meeting: \$600*2*(~1900)=\$2.28M
- Now: \$400 PMT + \$240 base = \$640 *2*(~1900) = \$2.43M

Budget Update

- IHEP (not including fibers) for 1700 PS+SH
 - Preshower: \$112k-\$120k
 - Shower: \$549k-\$651k
 - Structure+assembly: \$255k-\$340k
 - IHEP total: (\$1.22-\$1.51)M + 24% overhead (2012 rate) = (\$1.51-\$1.87)M
- Fiber connectors+tubing (Leoni+other): ~\$300k
- WLS+clear fibers: \$777k+\$448k (S.G.) \$1.66M (Kuraray)
- PMTs: \$640x2x(~1900)=\$2.43M
- Total from above (no contingency): <u>(\$5.3M-\$5.7M)</u> if using S.G.

Labor? Shipping? Contingency?

Plan

- Continue tweaking baffles to reduce background (but no significant change in PID expected)
- LED calibration?
- Reducing cost:
 - MAPMT study, perhaps even small-scale tests potential saving of ~\$800k
 - use CLAS12 cutter to cut fibers ourselves potential saving of \$448k, but need labor to cut ~190,000 fibers
 - Customized PMT bases?
 - Smaller PMTs for Preshower?

Possible Design Update – Multi-Anode PMTs

- Current Preshower readout: 1 PMT (\$600)/module, but each module is read out by only a couple of fibers so we are wasting cross-sectional area of the PMT;
- MAPMT: about \$100/channel → potential saving of PS PMT from \$1.02M to \$200k;
- To be studied: gain-matching between channels of one MAPMT. LHCb used specialized front-end electronic modules to produce digital triggers. We could use FADC directly, no need for FE-electronics.

Backup Slides

SoLID Collaboration Meeting, May 2013 36

Jefferson Lab

 Jin Huang <jinhuang@jlab.org>
 EC group Internal Communication
 37

 SoLID Collaboration Meeting, May 2013
 37

More detail in trigger cut Middle radius, higher $\gamma \varphi$ -band, full bgd Shower Hex 1+6 trigger > 2.1 GeV

Pion Efficiency

Jefferson Lab

Electron Efficiency

Jin Huang EC group Internal 38 <jin Solution Contenting 2013 38

Readout occupancy per shower channel for

Jefferson Lab

Jin Huang <jinhuang@jlab.org>EC group Internal Communication39SoLID Collaboration Meeting, May 201339