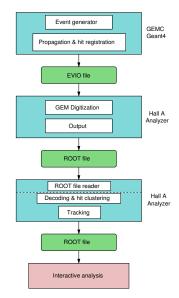
Update on SoLID Simulation Track Reconstruction

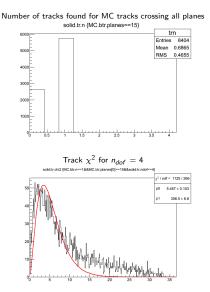

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting August 20, 2013

Track Reconstruction Simulation

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape simulated
 - Ad-hoc noise simulation (random time offset)
 - No other detectors digitized yet
 - Partial passthrough of generated data (tracks, vertices)
- ROOT file interface
- Tracking


Progress Since Last Meeting

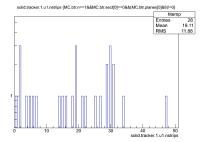
- Investigated "low" (88%) tracking efficiency for "muons, no field, no materials" (clean data set)
- Analyzed "muons, no field, with materials" data set
 - Surprise: Apparent tracking efficiency drops to $\approx 69\%$
 - Not yet understood
- Added background to "with materials" data set
 - Full background defined by 50 μ A beam current, 200 ns time window
 - 0.2% 10% background levels studied
 - Higher levels very time-consuming to digitize (can be improved)
 - NB: Background runs done with field on
 - \star Good: low-energy charged particles deflected from trackers \rightarrow realistic simulation of noise
 - Bad: actual secondary tracks curved, reconstruct with low efficiency (see last meeting's talk), thus underestimated
- Details: next slides

Why Only \approx 88% Tracking Efficiency With Clean Data?

- Single-hit efficiency
 - \blacktriangleright Digitization with present parameters gives $\approx 90\%$
 - u and v hit efficiency almost perfectly correlated
 - $\blacktriangleright\,$ 2D fit with 4 planes allowing up to 1 missing hit $\rightarrow \approx 95\%$ fit efficiency
 - Could be improved with 5th tracker plane, allowing 2 missing hits
- Amplitude correlations
 - u-v amplitude asymmetry < 18% considered a match
 - Allowing 1 out of 4 mismatches
 - Almost 100% efficient
- χ^2 cuts
 - Cuts applied to both 2D and 3D fit results
 - ► Long tails → multiple scattering?
 - \approx 92–96% of tracks pass each cut (partly correlated)
 - Could possibly be improved with different tracking algorithm
- Combining these (correlated) efficiencies largely explains observed overall tracking efficiency

Tracking Efficiency For "Muons, no field, with materials"

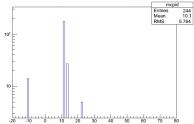
• Track finding efficiency


 $\frac{5766}{8404} = 68.6\%$

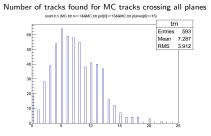
- Much lower than ≈ 88% of "no materials" data set!?
- Bug? Wrong parameter? Geometry problem? Beam spray?
- Don't panic. This might be a bug. To be investigated.

Muons, no field, with materials 10% background added

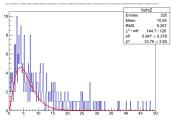
Strip Occupancy, 10% background


Number of strips above ADC threshold, sector 0 plane 0

PRELIMINARY			
Plane	nstrips _{mean}	# strips	Occupancy (%)
u1	20.8	681	3.1
v1	22.3	579	3.9
u2	16.1	897	1.8
v2	17.9	643	2.8
u3	15.7	1077	1.5
v3	16.1	1077	1.5
u4	14.6	1153	1.3
v4	15.1	1153	1.3


PID of hits, sector 0 plane 0

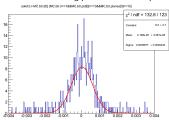
MC.hit.pid {MC.hit.sect==0&&MC.hit.plane==0&&MC.btr.n==1&&MC.btr.sect[0]==0&&(MC.btr.planes[0]&8)!=0}



- First plane sees many slow electrons (p < 1 MeV)
- Occupancy depends on ADC cut. Not yet optimized
- Obviously, will get ×10 higher occupancy with 100% background
- Estimated SBS raw occupancy < 20% in all planes</p>

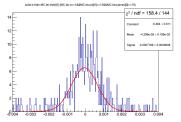
Tracking Efficiency For 10% Background

 χ^2 of tracks with $\textit{n_{dof}}$ = 4 and passing $3\sigma\text{-cuts}$ on residuals

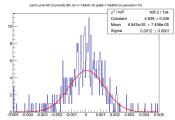


• Track finding efficiency

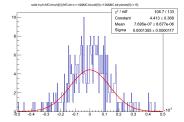
$$\frac{373}{593} = 62.9\%$$


- This is this probability that an actual track will be "accurately" reconstructed.
- Experimental track finding probability will likely be higher because
 - Even "not accurately" reconstructed tracks might appear acceptable
 - Some ghost or secondary tracks might look like real tracks, too
- Ghost and secondary track rates not yet determined. Requires additional analysis code (in development).

Residuals



r-coordinate of crossing point in first GEM plane


 θ_{dir} : Polar angle of momentum

ϕ -coordinate of crossing point in first GEM plane

 ϕ_{dir} : Azimuth of momentum

Preliminary Observations

- Occupancies appear similar to SBS case. Encouraging.
- Apparently only small tracking efficiency difference between 0% and 10% background cases. Encouraging, but to be confirmed.
- Presence of field in background data leads to underestimation of secondary track rate. Probably no workaround possible with TreeSearch algorithm.
- Impact of ghost and secondary tracks difficult to determine without information from other detectors.

Next Steps

- Investigate odd drop of efficiency when materials are added to signal runs (1 week)
- Finish code development for ghost & secondary track rate determination (1 week)
- Improve digitization speed, e.g. fold 30 sectors into one as suggested by Paul Souder (1 week)
- Add logic to distinguish signal from background similar to what non-tracking detectors would do (e.g., crude target reconstruction, rough approximation of Cherenkov & calorimeter responses based on known PID and momentum, etc.) (1 week)
- Simulate 50% and 100% background (few days)
- Extract performance data & finish writeup (1 week)