Pions Background Study : Update SoLID PVDIS

Rakitha Beminiwattha : SoLID Collaboration Meeting

Goals

• Pions (π^{-} , π^{+}) background generated at the target

<u>To-dos</u>

- Compare rates and π /e ratios with proposed values
- Find ways to minimize the pion acceptance at the GEMs and ECAL.

Input Summary

- Pions are generated with following input conditions,
 - LD2 target
 - Luminosity 54x10³⁷ Hz/cm2 (22 uA)
 - Incident electron beam energy: 11 GeV
 - Target length: 40 cm
 - Raster: 2x2 mm²
 - 1 million events

Wiser Input

Low energy Pions from Wiser fits have very high rates → Large rates at GEMs

4

Total pi+ rate for momentum < 2 GeV = 5694 Mhz/uA Too large?

08/19/13

Rakitha Be

Generated Pion Momentum

- This is the momentum distribution input into the simulation
- Pions of energies above the vertical line are seen at the last GEM

Rakitha Beminiwattha : SoLID Collaboration Meeting

Pion rates across the GEM planes

6

π Rate Summary

Process	Baffle Geometry		
	Lead (MHz/uA)	Kryptonite (MHz/uA)	
π ⁺ (p> 0.3 GeV)	235	40	
π ⁺ (p> 1 GeV)	17	1	
π ⁺ (p> 2 GeV)	1	0.02	

Process	Baffle Geometry		
	Lead (MHz/uA)	Kryptonite (MHz/uA)	
π⁻ (p> 0.3 GeV)	178	25	
π⁻ (p> 1 GeV)	31	15	
π⁻ (p> 2 GeV)	3	2	

Simulation Test 1

- Generated Pions (+/-) at the target (No Physics)
 - Mean : E=1 GeV, θ =30°, ϕ =180°
 - Spread : $\Delta E=1 \text{ GeV}$, $\Delta \theta=30^{\circ}$, $\Delta \phi=180^{\circ}$
 - Mean (Vertex) : (0, 0, 0) cm
 - Spread (Vertex) : (0.1, 20) cm
- Used Lead and Kryptonite baffles
- Only primary tracks are considered

Primary Momentum at GEM Planes with Lead Baffles

Rakitha Beminiwattha : SoLID Collaboration Meeting

Primary Momentum at GEM Planes with Kryptonite Baffles

Rakitha Beminiwattha : SoLID Collaboration Meeting

Simulation Test 1 : Kinematics Summary

 π + at Last GEM (E< 2 GeV) with Pb Baffle

 π - at Last GEM (E< 2 GeV) with Pb Baffle

 π - at Last GEM (E< 2 GeV) with Kryptonite Baffle

 π + at Last GEM (E< 2 GeV) with Kryptonite Baffle

Rakitha Beminiwattha : SoLID Collaboration Meeting

Simulation Test 2 : All Kryptonite Geometry

- Used kryptonite for,
 - Magnet, baffles, and EC-forward angle
- Input Wiser-fit pions (+/-)
- Only primary tracks are considered

Pi + and - : All Kryptonite Geometry

Rakitha Beminiwattha : SoLID Collaboration Meeting

Pi + and - : All Kryptonite Geometry

€

5 1800

800 F

400 F

200 E

 π + at 1st GEM (E< 2 GeV) with Krypto Baffle,Magnet, EC M Ja 1800 Scattering 0 (deg.)

π+ at Last GEM (E< 2 GeV) with Krypto Baffle,Magnet, EC

π- at 1st GEM (E< 2 GeV) with Krypto Baffle,Magnet, EC

π- at Last GEM (E< 2 GeV) with Krypto Baffle,Magnet, EC

Rakitha Beminiwattha : SoLID Collaboration Meeting

Scattering 0 (deg.)

Summary

- Pions that traverse through baffle slits can be minimized by increasing the no. of baffles
- Provide additional shielding for pions scattered at small (less than 20°) and large angles (about $40^{\circ} 70^{\circ}$)
- Improve the baffle design (thickness and etc.) to stop pions leaking through the baffles.

Issues

- Wiser fit rates are about 50 times higher than expected rates
 - This is compared to rates given in the proposal

Supplementary

π^+ Rate Summary

Process	Baffle Geometry		
	Lead (MHz/uA)	Kryptonite (MHz/uA)	
π ⁺ (p> 0.3 GeV)	235	40	
π ⁺ (p> 1 GeV)	17	1	
π ⁺ (p> 2 GeV)	1	0.02	

π^{-} Rate Summary

Process	Baffle Geometry		
	Lead (MHz/uA)	Kryptonite (MHz/uA)	
π⁻ (p> 0.3 GeV)	178	25	
π⁻ (p> 1 GeV)	31	15	
π⁻ (p> 2 GeV)	3	2	

Reduction in Pion Counts

	Reduction in Pion counts w.r.t. Lead baffles				
	Pb \rightarrow Kryptonite baffles Reduction (%)		$Pb \rightarrow Kryptonite baffles, Kryptonite Magnet and EC$		
			Reduction (%)		
	1st GEM	Last GEM	1st GEM	Last GEM	
π^{+}	89	88	99	99	
π-	62	60	98	98	

Simulation Summary

- Used solgemc and results are weighted using the pion rate
- Things included in the simulation,
 - CLEO solenoid
 - Target
 - Al Beamline
 - Pb Baffles
 - Cerenkov
 - GEM (4 GEMs)
 - EC forward-angle
- Field is ON
- Ran about 1 million events

Input Generation

Simulation Test 3 : No Field Check

- Input Isotropic pion distribution described at the beginning
- Used Kryptonite baffles
- Simulate with no magnetic filed
- Only primary tracks are considered

Pi+ : No Field Check

 π + at 1st GEM (E< 2 GeV) with Krypto Baffle no Mag. Field

π+ at Last GEM (E< 2 GeV) with Krypto Baffle no Mag. Field

π+ at 1st GEM (E< 2 GeV) with Krypto Baffle No Mag. Field

π+ at Last GEM (E< 2 GeV) with Krypto Baffle No Mag. Field

Rakitha Beminiwattha : SoLID Collaboration Meeting

08/19/13

