SoLID Track Reconstruction

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting November 9, 2013

SoLID Tracking Considerations

- High rates $\mathcal{O}(1~\text{MHz/cm}^2),$ high occupancies (20%) \rightarrow moderately difficult environment
- Tracks not straight
- GEM readout coordinates not parallel between all planes (at least in current PVDIS design)
- \bullet Real-time track reconstruction desirable for level-3 trigger \rightarrow want fast algorithm

Choice of Reconstruction Algorithm

- Curved tracks, non-parallel coordinates → progressive algorithm (Kalman filter)
- $\bullet\,$ Little expertise in Hall A, but in other halls $\rightarrow\,$ consult
- Very preliminary version exists (Xin Qian)
- This is a multi-year development effort (but we have the time)

This Talk: Track Reconstruction Feasibility Study

- Simplify the problem in simulation:
 - \blacktriangleright Rotate GEM strips in software \rightarrow parallel coordinate axes
 - \blacktriangleright Simulate DIS signal without magnetic field \rightarrow straight tracks
 - \blacktriangleright Background (simulated with field) added separately \rightarrow can vary background level
 - Expect this still to demonstrate *feasibility* of track finding
- Use existing TreeSearch reconstruction (BigBite)
 - Available now
 - Well tested & integrated in Hall A analyzer
 - Shown to work with SBS GEM trackers at \geq SoLID occupancies

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape
 - Background added with randomized time offset
 - No other detectors digitized yet
 - Generated data (tracks, vertices) passed through
- ROOT file interface
- Tracking

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape
 - Background added with randomized time offset
 - No other detectors digitized yet
 - Generated data (tracks, vertices) passed through
- ROOT file interface
- Tracking

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape
 - Background added with randomized time offset
 - No other detectors digitized yet
 - Generated data (tracks, vertices) passed through
- ROOT file interface
- Tracking

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape
 - Background added with randomized time offset
 - No other detectors digitized yet
 - Generated data (tracks, vertices) passed through
- ROOT file interface
- Tracking

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape
 - Background added with randomized time offset
 - No other detectors digitized yet
 - Generated data (tracks, vertices) passed through
- ROOT file interface
- Tracking

Track Reconstruction Simulation ("data challenge" ready)

- solgemc EVIO files as digitization input (S. Riordan)
- GEM digitization based on SBS work (E. Cisbani, R. Holmes)
 - APV25 pulse shape
 - Background added with randomized time offset
 - No other detectors digitized yet
 - Generated data (tracks, vertices) passed through
- ROOT file interface
- Tracking
- Should eventually use actual DAQ / format (CODA 3) for analyzer input

GEM & APV25 Digitization (adapted from SBS by Rich Holmes)

- GEMC outputs raw hits (energy deposition ΔE) in GEM layers
- GEM response tuned to match COMPASS observations
- Avalanche simulation:
 - Poisson-distributed number of ion pairs calculated from ΔE
 - Use geometric distribution for ionization probability along path
 - Assume constant-velocity diffusion and drift
 - Gaussian distribution of charge deposited on strips
- Shape output amplitude: v = Aτ exp(-τ), record 3 samples in 25ns intervals

APV25 Pulse Shape Deconvolution & Noise Filtering

S. Gadomski et al., NIM A 320, 217 (1992)

 For first-order RC circuit, signal amplitudes sk can be deconvoluted using three measured values vk:

$$s_k = w_1 v_k + w_2 v_{k-1} + w_3 v_{k-2}$$

$$w_1 = e^{x-1}/x, w_2 = -2e^{-1}/x, w_3 = e^{-x-1}/x, \text{ where } x = \Delta t/T_p$$

$$A \approx \sum_{k=1}^3 s_k$$

• Reject noise by cutting on ratios, $r_1 = v_3/v_1$ and $r_2 = v_2/v_1$, requiring rising slope

TreeSearch Algorithm

M. Dell'orso and L. Ristori, NIM A 287, 436 (1990)

- Global algorithm (non-progressive)
- Recursive template matching
- Works in 2D only (one readout coordinate, "projection")
- Fast $(\mathcal{O}(\log N))$ and memory-efficient $(\mathcal{O}(10 \text{ MB}))$
- \bullet Independent of other detectors \rightarrow no seed needed
- Used by HERMES, Qweak, etc.

TreeSearch Illustration

3D Matching

- Correlate roads from different projections via hit amplitude in shared readout planes
- Repeat for each readout plane along *z*
- Pair roads with the best overall correlation to get space points for 3D track fits
- Calorimeter hit helps resolve

TreeSearch Track Reconstruction Chain (GEM version)

MC Data Sets & Analysis Status

- Configuration
 - 40 cm LD₂ target in 11 GeV beam
 - PVDIS detector setup with 5 GEM planes
 - baffles (which?)
- "Signal Runs"
 - Generator: DIS
 - Only interactions of primary particle recorded
 - Available data sets

Primary	Field	Materials	# events
particle			w/GEM hits
μ^{-}	off	trackers	240k
μ^{-}	off	"all"	248k
e ⁻	on	"all"	14k

 "Trackers" materials: only interactions with GEM trackers recorded ("ultra-clean data")

Background Simulation

- "Background Runs"
 - Same configuration as for signal runs
 - Simulated 198 M background events (= electrons passing through target)
 - Production rate \approx 40 M/hr
- Adding background to signal runs in digitization step
 - $\blacktriangleright\,$ Approx. 86 M background events occur in 275 ns time window at 50 $\mu{\rm A}$ $\rightarrow\,100\%\,$ background
 - To reduce analysis time: fold background from 30 sectors into signal sector with random time offset per sector
 - ▶ Obviously not enough background events for any significant number of signal events → re-use events, but with different time randomization ("pseudo-statistical" background)
- Status
 - Digitization runs

Signal Data	Signal	Backgr.	Digitization rate	
	events	strength	(signal events/hr)	
μ^-/no field/all mats	10 k	25%	1250	

- $\blacktriangleright\,$ Time scales with background strength $\rightarrow\,$ est. 300 events/hr @ 100%
- Older digitized data: 10% background, 4 GEM planes, no sector folding, time randomization bug

Strip Occupancy, 25% background, 5 GEM Planes

Number of strips above ADC threshold, sector 0 plane 0

solid.tracker.1.u1.nstrips {MC.btr.n==1&&(MC.btr.planes[0]&16)!=0}

Filtered occupancies, 5 GEM setup, 25% background						
Plane	Mean #	Total #	Occup. @	Occup. @		
	active	strips	25% (%)	100% (%)		
u1	19.3	753	2.6	10.2		
v1	20.1	627	3.2	12.8		
u2	13.8	945	1.5	5.8		
v2	14.8	659	2.2	9.0		
u3	12.2	921	1.3	5.3		
v3	13.1	657	2.0	8.0		
u4	8.5	1271	0.67	2.7		
v4	8.8	1271	0.69	2.8		
u5	8.1	1309	0.62	2.5		
v5	8.5	1309	0.65	2.6		

First plane sees many slow electrons (p < 1 MeV)

● Estimated SBS raw occupancy < 20% in all planes → estimated SoLID occupancies well below SBS

Tracking Efficiency For 25% Background

- Apparently still buggy alignment?
- Track finding efficiency

$$\frac{142}{797} = 17.8\%$$

- This is this probability that an actual track will be "accurately" reconstructed.
- Experimental track finding probability will likely be higher because
 - Even "not accurately" reconstructed tracks might appear acceptable
 - Some ghost or secondary tracks might look like real tracks, too
- Ghost and secondary track rates not yet determined. Requires additional analysis code (in development).

Residuals (10% Background, 4 GEM Planes)

 θ_{dir} : Polar angle of momentum

$\phi\text{-coordinate}$ of crossing point in first GEM plane

ϕ_{dir} : Azimuth of momentum

Tracking Performance vs. Background Level

(to be done)

Observations

- Occupancies appear less than in SBS case. Encouraging.
- Tracking efficiency very low with 5-plane data \rightarrow BUG?
- Ghosts and secondary track rates appear to be negligible (to be confirmed) → noise filtering is effective.
- Residuals look very reasonable (for 10% background)
- After fixing apparent bugs, need to run up to 100% background to avoid having to extrapolate (time-consuming)

Outlook: Program for Next 18-24 Months

- Re-run simulation with latest baffle design(s)
- Debug/finish feasibility study with TreeSearch. Demonstrate tracking at 100% background level
- Make GEM digitization more realistic (cluster size too small)
- Include all other detectors in digitization & analysis
- Develop progressive tracking algorithm
- Demonstrate curved track reconstruction feasibility, performance etc.

Backup Slides

GEM Hit Clustering

- Signals on adjacent readout strips typically belong to a single track crossing
- Sum signals to get
 - total hit amplitude
 - charge-weighted position centroid
 - Currently use simple algorithm:
 - Look for local peak
 - When sequence "peak-valley-peak" is seen, split cluster at "valley"
 - Regardless of shape, limit clusters to a maximum size
 - Improvements
 - Match hits by their pulse shape, i.e. timing centroid
 - Redo clustering after preliminary tracking (e.g. better cluster splitting)
 - ... possibly more
 - *NB:* Clustering does not necessarily have to be separate from tracking, could be integrated into a progressive tracking algorithm

