GEM Status from SoLID Chinese Cluster

Jianbei Liu

University of Science and Technology of China

SoLID Collaboration Meeting July 10, 2014 JLab

Chinese Cluster in SoLID

China Institute of Atomic Energy (CIAE)

Lanzhou University

Tsinghua University

University of Science and Technology of China (USTC)

University of Science and Technology of China

Outline

- GEM detector R&D
 - -General R&D
 - -Large-area GEMs
- R&D on GEM foil production
 - Double mask technique
- GEM readout
 - -APV25-based

-Others

General GEM R&D

- Studies of a 5cm*5cm double-GEM prototype at Tsinghua University
- Studies of a 10cm*10cm triple-GEM prototype at Lanzhou University

A 5cm*5cm double-GEM prototype

Tsinghua

• 2d readout, strip pitch: 0.45mm (X) and 0.625mm (Y)

GEM chamber

27 28 29 30 31 32 33 34

Cluster size (hit strip multiplicity) hmulti X , sount sount Entries 544015 2,699 0.5892 250 Sparking rate (rate 200 of events with large 150 cluster size) : ~10⁻⁶ 100 50 14

Detector response vs. GEM spacing

 Studied the sensitivity of detector response to distance between GEMs by artificially pushing up a GEM plane on one side.

Tsinghua

GEM Simulation

Tsinghua

A 10cm*10cm triple-GEM prototype

Lanzhou University

Large-area GEM R&D at Tsinghua

Built a 45cm*45cm GEM chamber

Assembling process

Tsinghua

2mm 2mm

2mm

2mm

High voltage distribution

Hybrid readout board

Mylar foil

Drift cathode

GEM 2

GEM 3

Readout board

Performance

 Tested the GEM chamber with only two GEM layers assembled

Problem being worked on: One sector of the second GEM foil shorted. May need to change the GEM foil.

Large-area GEM R&D at USTC

USTC

- Built a new 30cm*30cm GEM using NS2 technique developed at CERN.
- Lots of improvements in design compared to a previous chamber of the same size.
 - Screws
 - Main frame
 - GEM foil frame

Fabrication of GEM layers

USTC

Main frame

Chamber Assembly

USTC

GEM Test

USTC

Performance

Effective gain in different readout sectors

USTC

Energy resolution: ~20%

Gain uniformity : 31% (in contrast to 75% of the previous chamber)

Effective gain vs. High voltage

Towards 1m*0.5m

R&D on GEM foil production

- A big effort by China Institute of Atomic Energy
- A facility for GEM foil production established on site
- GEM foil production size reached up to 30cm*30cm using double-mask technique

Process flow of GEM foil production with double-mask technique

GEM foil production facility

CIAE

Hot Roll Lamination machine

Exposure machine

- The two most important and difficult steps in GEM foil production: Lamination and exposure of dry film photoresist.
- A yellow-light area has been set up, as required for the operation of the two machines.
- Invited a senior PCB engineer to get training

GEM foil production facility

Etching rooms

kapton etching

copper etching

Raw Foils

Tried raw foils from different producers (left two from US, the rest from CERN but made in South Korean)

GEM foil Production Process

Mask plate

Lamination of photoresist

Exposure of photoresist

Copper etching

Kapton etching

Kapton etching under different conditions

Comparison of different raw foils

CIAE

After etching copper

Raw foils from CERN

Raw foils from the US

After removing photoresist

Etching result looks good with both types of raw foils

30cm*30cm GEM foils

A 30cm*30cm GEM foil

CIAE

- Successfully produced 30cm*30cm GEM foils using the double-mask technique after ~2000 experiments.
- Top and bottom masks misaligned sometimes.
 Being worked out.

A GEM foil produced with top and bottom mask misaligned

GEM Readout

- APV25-based
 - Setting up and test of the "INFN" readout system
 - Design effort
- CASAGEM-based
- SFE16-based

"INFN" readout system

CIAE

System debugging

Calibration system

Data frame with calibration pulses

Imaging with "INFN" readout

- A GEM chamber equipped with the "INFN" readout for X-ray imaging test
- The whole system worked fine.

- CIAE
- Working on further improving the "combined" performance of GEM with "INFN" readout.

Design Effort at USTC

FPGA logic design

Main PCB under test

Specifications of main components

MODULE	DEVICE
Preamplifier	AD8138
ADC	AD9257
Clock	AD9577
FPGA	EP3C80F484
CPLD	EPM2210F324
SDRAM	MT48LC4M32
USB	CY7C68013A
Interface	USB && PXI

- Developing a readout system based on APV25
- Expected to be ready for test with GEM in a few months.

USTC

CASAGEM-based readout

 Developed by Tsinghua University and has been used for GEM R&D at Tsinghua.

Tsinghua

SFE16-based readout

Being tested at USTC and will be used for performance studies of the 30cm*30cm GEM chamber.

16 SFE16 chips

HPTDC

Cables connecting SFE16 and HPTDC

Summary

- Active GEM R&D in the Chinese cluster
 - General GEM performance studies using GEM prototypes.
 - Spatial and energy resolutions, effective gain, response uniformity and sensitivity ...
 - Design and fabrication of large-area GEM chambers
 - Reached ~0.4*0.4 m^2 , going towards 0.5*1.0 m^2
 - GEM foil production
 - Successfully produced a 30*30 cm² foil. Working on improving production process for a higher rate of quality foils.
 - GEM readout systems
 - APV25-based "INFN" readout system works now in principle. The whole cluster will benefit from it.
 - Other readout systems developed/established/being designed