Light Gas Cherenkov Detector for SoLID

1

E. Kaczanowicz, Z.-E. Meziani, <u>M. Paolone</u>, N. Sparveris

Temple University

SoLID Dry Run July 9th 2014

- The LGC is designed to accommodate two primary configurations:
 - SIDIS

- Each configuration has different:
 - incident particle angle / momentum ranges
 - luminosity
 - background profiles
 - space constraints

- PVDIS

 Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS
 - 1 to 5 GeV
 - ~7 to 15 deg

- Each configuration has different:
 - incident particle angle / momentum ranges
 - luminosity
 - background profiles
 - space constraints

- PVDIS
 - 2 to 4 GeV
 - 22 to 35 deg
- Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS
 - 15uA on³He

- Each configuration has different:
 - incident particle angle / momentum ranges
 - luminosity
 - background profiles
 - space constraints

- PVDIS
 - 50uA on D / H
- Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS
 - Forward Calorimeter
 - Additional Gems

- Each configuration has different:
 - incident particle angle / momentum ranges
 - luminosity
 - background profiles
 - space constraints

- PVDIS
 - Baffles
- Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS

- Each configuration has different:
 - incident particle angle / momentum ranges
 - luminosity
 - background profiles
 - space constraints

- PVDIS
 - Baffles
- Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

LGC geometric / material characteristics

• Cherenkov is designed to maximize component use between the two configurations.

- 30 sectors (defined by baffle segmentation)
 - 2 spherical mirrors per sector (60 mirrors total)
- Blanks are Carbon Fiber Reinforced Polymer [CFRP] (Same as LHCb RICH)
 - Areal density < 6 kg/m²
 - Reflective coating provided by Stony Brook (AI / MgF₂)
 - Total reflective area per mirror is roughly 0.3 m²
 Common

Mirrors

PMT Assembly

- All components are common without adjustment between both configurations.
- PMT assembly is:
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - 64 pixel PMT array for each H8500C
 - Average QE ~ 15%
 - Reflective cone
 - Mu-metal shielding.
 - 0.04" thickness with 0.125" thick steel reinforcement
 - Reduce B_T and B_L from 95 and 135 gauss (respectively) to < 50 gauss.

PMT Assembly

- All components are common without • adjustment between both configurations.
- PMT assembly is: •
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - 64 pixel PMT array for each H8500C
 - Average QE ~ 15%
 - **Reflective cone**
 - Mu-metal shielding. —
 - 0.04" thickness with 0.125" thick steel reinforcement

PMT Assembly

- All components are common without adjustment between both configurations.
- PMT assembly is:
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - 64 pixel PMT array for each H8500C
 - Average QE ~ 15%
 - Reflective cone
 - Mu-metal shielding.
 - 0.04" thickness with 0.125" thick steel reinforcement
 3 x 3 PMTs

Mu-Metal

Glass Cone

Simulation for pi rejection

• Event generation:

- Electrons from electron generator eicRate.
- Pions from eicRate (Wiser)
- Uniformly distributed along target length.
- Propagate tracks out of target to LGC window
 - All interactions are handled by GEMC / Geant4
 - All materials from SoLID design are included in the transport.
 - CLEO magnetic field map is used.
- Simulate Cherenkov radiation through gas and collect optical photons.
 - Collection is recorded at the PMT on a p.e. per pixel level.
 - QE as a function of photon energy is taken into account.
 - Pion triggers below Cherenkov threshold are primarily from delta rays.

Total Collection Efficiency for Electrons

- Calculated as # optical photons detected at PMT divided by # reflections from spherical mirrors. Includes:
 - Reflection efficiencies
 - Quantum efficiency (dominant)
 - Geometrical acceptance
- Aside: These simulations were done with older baffles and geometries! (circa 2012).
 - I can easily run all numbers again with latest baffles / geometries. It just takes CPU hours on the farm.
 - I don't expect any major changes.

Second Aside on Simulations

- All of these simulations are done with a personally modified GEMC 1.8 (additional reflectivity options + small changes).
 - Getting harder to collect all dependencies and install a working version with my modified GEMC.
 - Need to upgrade and update!
 - Should be done in scope of larger simulation efforts.

Pion / electron signal

• Sample of collected PE signal:

(This MC is for track momentum below pion radiation threshold)

- Three settings possible pion rejection setting shown:
 - Nominal

11

- 90% of Nominal
- 80% of Nominal

Secondary backgrounds

- All pion rejection shown on previous slides only considers the primary source of pion contamination from pion production at the beam / target nucleon vertex (via Wiser)
- Other sources of background come from secondary particle production.
 - Secondary background simulation is done by putting an 11
 GeV electron beam on target in GEMC / Geant4.
 - 200M events are simulated per "pass" on the ifarm.
 - This equates to 0.64 micro-seconds of beam.
 - Geant4 physics list QGSP_BERT controls all EM / hadronic reactions.

Rate of particles through LGC entrance window (PVDIS)

- Aside: Now using latest baffle configuration
- High luminosity + large acceptance = large rates
 - High rates can be handled, but care must be taken!
- Total rate through the LGC window for PVDIS.
 - Integrated over all momentums.

Rate of particles through LGC entrance window

- Aside: Now using latest baffle configuration
- Rate through the LGC window.
 - Only cherenkov radiation candidates.
- Energies > LGC threshold
 - (10 MeV gamma/electrons)
 - (3 GeV pions)
 - (2.4 GeV muons)
 - (11 GeV kaons)

Accidental trigger rates per sector

- SIDIS accidental rates are relatively small.
- PVDIS rates are greater, but improved overtime with better baffle design.

PVDIS	Old 6 plane baffle (MHz)	Not as old 11 plane baffle (MHz)
1 or more pe's per sector	4.94	2.99
2 or more pe's per sector	3.44	1.93
1 or more pe's in two different PMTs	2.50	1.56

SIDIS	Rate per sector (MHz)
1 or more pe's per sector	0.319
2 or more pe's per sector	0.219
1 or more pe's in two different PMTs	0.128

PVDIS needs updating with latest geometries / baffles.

Rates are large, but manageable: EC + LGC gives < 20 kHz per sector

Photons direct on PMTs

- Non-optical photons that interact with the maPMTs may also cause some background.
 - First step: Simulate the rate of these photons incident on the PMTs:
 - Two obvious peaks.
 - Neutron capture with hydrogen in carbon fiber mirrors.
 - e+ e- annihilation
 - Low energy photon rate still dominated by electron production.

Photons direct on PMTs

- Non-optical photons that interact with the maPMTs may also cause some background.
 - First step: Simulate the rate of these photons incident on the PMTs:
 - Two obvious peaks.
 - Neutron capture with hydrogen in carbon fiber mirrors.
 - e+ e- annihilation
 - Low energy photon rate still dominated by electron production.

Continuing Improvements

- Wavelength shifter for PMTs:
 - Temple is currently coating and testing the clas12 LGCC PMTs with p-Terphenyl.
 - Could increase photoelectron output by 50%.

Face plate coating: Before and after

Continuing Improvements

- Pattern of photoelectron signal could be recorded (binary signal per pixel) with a MAROC chip.
- Binary output together with pattern recognition (Neural Net?) could provide limited tracking information.
 - Possibly useful for background suppression or better pion rejection.

Prototyping

- 1st stage (Pre-R&D)
 - maPMT / DAQ testing
 - small Cherenkov tank
 - With electron source → test more realistic PMT response.
 - Ideally with a single aluminized / polished CFRP mirror
- 2nd stage (\$t 2nd year DOE)
 - Construction of 1/6th of total SoLID detector.
 - 5 combined sectors \rightarrow to be used in final detector.
 - Prototype 1/6th size tank.

Conclusion

- The SoLID LGC is designed to meet the requirements of the SIDIS and PVDIS experimental programs while maximizing inter-component use (minimizing cost).
- Extensive GEMC / Geant4 simulations have been performed testing signal, backgrounds, and pion rejection.
- Continuing efforts to study (and reduce) simulated EM / hadronic backgrounds.
- Wavelength shifting and PMT pixel pattern analysis are being investigated and may lead to even better LGC performance.

LGC support and engineering

LGC support and engineering

LGC support and engineering

PVDIS

SIDIS

Trigger Efficiencies

PMT in Magnetic Field

