

Electromagnetic Calorimeters (EC) for SoLID

The SoLID EC Working Group

SoLID Collaboration Meeting

July 9-10, 2014

SoLID EC configuration

Provide key e/π separation, modules shared between PVDIS & SIDIS

	θ (deg)	z (cm)	R(cm)	P (GeV/c)	Max π/e	Area (m²)
PVDIS FAEC	22 - 35	(320,380)	(110,265)	2.3 - 6	~200	~ 18.3
SIDIS FAEC	7.5 - 14.85	(417,475)	(98,230)	1 - 7	~200	~ 13.6
SIDIS LAEC	16.3 - 24	(-65,-5)	(83,140)	3-6	~20	~ 4.0

EC Design Requirements — Physics

- 1. Electron-hadron separation:
 - + >50:1 π rejection above Cherenkov threshold (~4) to 7GeV/c;
 - Electron efficiency > 95%;
 - + (energy resolution: $\sigma(E)/E < 10\%/\sqrt{E}$)
- 2. Provide trigger:
 - PVDIS: coincidence with CC, suppress background;
 - → SIDIS: identify beam bunch for PID thru TOF → timing $\sigma \sim 10^2 \text{ps}$
- 3. Provide shower position to help tracking/suppress background $\sigma \sim 1 \text{ cm}$

EC Design Requirements — Other

- 4. Radiation resistance: > (4-5)×10⁵ rad
- 5. B~1.5 T, high neutron background for SIDIS LAEC:
 - guide signals far from B field \rightarrow PMTs
 - not silicone-based detector
- 6. Modules easily swapped and rearranged for PVDIS ↔ SIDIS; SIDIS needs 2-fold rotation (180°) symmetry

SPD Design Requirements — Physics

1. Provide photon rejection (SIDIS only)

Material	ρ g/cm ³	X ₀ cm	R _M cm	λ _l cm	n refrac.	τ ns	$\frac{\text{peak}}{\lambda \text{ nm}}$	light yield	Npe /GeV	rad	δΕ/Ε
Crystals											
NaI(TI)	3.67	2.59	4.5	41.4	1.85	250	410	1.00	106	10 ²	1.5%/E ^{1/4}
CsI	4.53	1.85	3.8	36.5	1.80	30	420	0.05	104	104	2.0%/E ^{1/2}
CsI(Tl)	4.53	1.85	3.8	36.5	1.80	1200	550	0.40	106	10 ³	1.5%/E ^{1/2}
BGO	7.13	1.12	2.4	22.0	2.20	300	480	0.15	10 ⁵	10 ³	2%/E ^{1/2}
PbWO4	8.28	0.89	2.2	22.4	2.30	15/60%	420	0.013	104	10 ⁶	2.0%/E ^{1/2}
LSO	7.40	1.14	2.3		1.81	40	440	0.7	106	10 ⁶	1.5%/E ^{1/2}
PbF2	7.77	0.93	2.2		1.82	Cher	Cher	0.001	10 ³	10 ⁶	3.5%/E ^{1/2}
					Leo	ad glass					
TF1	3.86	2.74	4.7		1.65	Cher	Cher	0.001	10 ³	10 ³	5.0%/E ^{1/2}
SF-5	4.08	2.54	4.3	21.4	1.73	Cher	Cher	0.001	10 ³	10 ³	5.0%/E ^{1/2}
SF-57	5.51	1.54	2.6		1.89	Cher	Cher	0.001	10 ³	10 ³	5.0%/E ^{1/2}
Sampling: lead/scintillator											
SPACAL	5.0	1.6				5	425	0.3	2×10 ⁴	106	6.0%/E ^{1/2}
Shashlyk	5.0	1.6				5	425	0.3	10 ³	106	10%/E ^{1/2}
Shashlyk(K)	2.8	3.5	6.0			5	425	0.3	4x10 ⁵	10 ⁵	3.5%/E ^{1/2}

Choosing EC Type

- SoLID radiation level (~400 krad per year) is too high for leadglass and CSI-like crystals (typically 1krad).
- Our ECs are large: 6-8m^{3;} Crystals: PbWO₄ (\$10/cc) and LSO (\$40/cc) can stand 10⁶ rad, but to fill $\sim 6m^3 \rightarrow$ \$60M or \$240M.
- Both Shashlyk or SPACAL/SciFi (0.5-1Mrad) have enough radiation hardness and good energy, position and time resolution.

SciFi vs. Shashlyk:

- SciFi needs about half volume being scintillation fibers to reach good energy resolution
 - → ϕ 1mm fibers cost \$1/m: Total 6m³ → \$4M for fiber alone.
 - Two orders of magnitude fibers more than Shashlyk, hard to read out, high PMT/DAQ cost.
- Shashlyk: total module production cost ~\$3.4M from IHEP, plus fiber/PMT/DAQ.

SoLID Collaboration Meeting, July 9-10, 2014

6

Shashlyk EC

IHEP, COMPASS Shashlik, 2010

- Lead-scintillator sampling calorimeter
- → WLS fibers [1/(9.5mm)²] collect and guide out light → one PMT per module.
- Good and tunable energy resolution
- Radiation hardness: ~ 500 krad tested by IHEP
- transverse size can be customized
- Light collection and readout straightforward
- Well developed technology, used by many experiments, IHEP production rate about 200/month

IHEP Scintillator Facilities www.ihep.ru/scint/index-e.htm

Design Consideration 1: Longitudinal

- Preshower: 2X₀ lead + 20mm scintillator
- Preshower+Shower total length: 20X₀
- Preshower and Shower have the same lateral design, otherwise totally detached

SoLID Collaboration Meeting, July 9-10, 2014

Design Consideration 1: Longitudinal

- Preshower: 2X₀ lead + 20mm scintillator
- Preshower+Shower total length: 20X₀
- Shower: 100:1 intrinsic pion rejection → 0.5mm Pb/1.5 mm Scint. (BASF143E) per layer. [4.5-5%/sqrt(E)]

PVDIS physics requires the largest incident angle (35° from target center, 37° from downstream target); Calorimeter covers up to ~40°.

- Hexagon preferred by support design: $100 \text{ cm}^2 \rightarrow 6.25 \text{ cm}$ side
- Al support before Preshower and Shower; May need carbon fiber between Preshower and Shower to minimize effect on PID.

2X lead efficiently block low energy photons

Photon blocker helps

SIDIS: less of an issue

16

SIDIS: less of an issue

Design Consideration 4: SPD for SIDIS

- Readout similar to Preshower
- Forward: between heavy gas and MRPC, 60 azimuthal x 4 radial
- Large angle: in front of EC, 60 azimuthal

Design Consideration 4: SPD for SIDIS

Forward

Photon-rejection scintillator response

Design Consideration 4: SPD for SIDIS

Design Consideration 4: Readout

WLS fibers	Kuraray Y11	Saint Gobain BCF91A, BCF92 (faster)		
wavelength	~420 → 494nm	~430 → 476nm		
1/e length	>3.5m	>3.5m		
mechanical property	better bending			
radiation hardness	13% light loss at 100krad (30% at 700krad)	15% light loss at 100krad (50% at 700krad)		
light yield		2-3 times less than Y11		
Clear fibers	Kuraray clear-PSM	Saint Gobain BCF98		
cost	\$\$\$\$	\$\$		

Will use Y11 for Preshower/SPD, BCF91A for Shower; Clear fiber yet to be tested.

Design Consideration 4: Readout

Fiber connector options:

- Preshower: 1-1 connector
- Shower: 100-100 connector
- Both can be made in-house using Delrin (as LHCb). Lab test shows 80% of light transmission

- fiber fusing possible, but switching
 SIDIS ↔ PVDIS difficult and can't be
 done locally
- Investigating other options (MINOS: DDK connectors

Design Consideration 4: Readout

- SIDIS LAEC in high B field, high neutron background
- Silicon detectors expensive and won't stand the background.
- Guide light to low-B region to be read by PMTs
 - Shower: 100x φ−1mm fibers → φ-1in PMT (good area match), Hamamatsu R11102, x5 preamp gain, 5E4 PMT gain;

 - SPD: (2-4)× φ−1mm fiber → 16-ch MAPMT, Hamamatsu
 R11265-100-M16, ×50 preamp gain, 1.6E5 PMT gain

Working with JLab detector group on PMT base design

Performance – PID, SIDIS LAEC

Background

·Photon Electron Pi- Pi+ Proton 24

Performance — PID, SIDIS

Most inner radius region shown - worse case situation

Forward Calorimeter

* Intrinsic * W/ Background

Performance — PID, PVDIS

Background

Performance – PID, PVDIS (low γ)

Background worsens PID. Will require full waveform recording if better PID is desired.

Performance – PID, PVDIS (high γ)

Background worsens PID. Will require full waveform recording if better PID is desired.

Performance — Triggering SIDIS, large angle, electron trigger

Most inner radius region shown - worse case situation

Performance — Triggering SIDIS, forward

Electron trigger: Use radius-dependent trigger thresholds,

Performance — Triggering SIDIS, forward MIP trigger

Pion trigger: 2-sigma below MIP

Performance — Triggering SIDIS, trigger rates (whole EC)

region	FAEC	LAEC						
rate entering the EC (kHz)								
e^-	93.4	18.7						
π^{-}	5.36×10^3	$1.55 imes 10^4$						
π^+	$5.96 imes10^3$	$1.66 imes 10^4$						
$\gamma(\pi^0)$	1.52×10^5	$2.43 imes 10^5$						
$e(\pi^{0})$	6.52×10^3	$2.04 imes 10^3$						
p	1.86×10^3	$6.16 imes10^3$						
elec	tron trigger ra	te (kHz)						
e^-	74.2	11.68						
π^{-}	500	5.16						
π^+	548	5.12						
$\gamma(\pi^0)$	896	12.5						
$e(\pi^0)$	43	0.14						
p	109	2.15						
sum	2170	36.75						
M	IP trigger rate	(kHz)						
e^-	93.4							
π^{-}	5240							
π^+	5800							
$\gamma(\pi^0)$	6760							
$e(\pi^{0})$	772							
p	1732							
sum	$2 imes 10^4$							

Performance — Triggering PVDIS, higher photon background region

preserve DIS electron of x>0.35

Performance — Triggering PVDIS, lower photon background region

preserve DIS electron of x>0.35

Performance — Triggering PVDIS, trigger rates (whole EC)

region	full	high	low					
rate entering the EC (kHz)								
e^{-} (DIS)	413	148	265					
π^{-}	$5.1 imes 10^5$	$2.7 imes 10^5$	$2.4 imes 10^5$					
π^+	$2.1 imes 10^5$	$1.0 imes 10^5$	$1.2 imes 10^5$					
$\gamma(\pi^0)$	$8.4 imes 10^7$	4.2×10^7	$4.3 imes 10^7$					
p	$5.5 imes 10^4$	$2.4 imes 10^4$	$3.1 imes 10^4$					
sum	$8.5 imes 10^7$	4.2×10^7	$4.3 imes 10^7$					
trigger rate for $p > 1$ GeV (kHz)								
e^{-} (DIS)	321	80	231					
π^{-}	$4.8 imes 10^3$	$3.4 imes 10^3$	$1.4 imes 10^3$					
π^+	0.28×10^3	$0.11 imes 10^3$	$0.17 imes10^3$					
$\gamma(\pi^0)$	4	4	0					
p	$0.18 imes 10^3$	$0.10 imes10^3$	$0.08 imes 10^3$					
sum	$5.6 imes 10^3$	$3.7 imes 10^3$	$1.9 imes 10^3$					
trigger rate for $p < 1$ GeV (kHz)								
sum	$(3.1 \pm 0.7) \times 10^3$	$(1.6 \pm 0.4) \times 10^3$	$(1.5 \pm 0.4) \times 10^3$					
Total trigger rate (kHz)								
total	$(8.7 \pm 0.7) \times 10^3$	$(5.3 \pm 0.4) \times 10^3$	$(3.4 \pm 0.4) \times 10^3$					

Pre-R&D: preshower prototype testing

Tested:

- WLS fiber: <u>Y11</u>, BCF91A (55%), BCF92 (35%)
- wrapping: printer paper, Tyvek homewrap (10% higher), <u>aluminized mylar (17% higher)</u>

Pre-R&D: preshower prototype testing

Pre-R&D: preshower prototype testing

- WLS fiber decay observed <3m: <2m or 3.50m w 6%/turn bending loss;
- best estimate: 26 for LAEC, 35 for FAEC effect on PID to be simulated
- For SPD (3 turns fiber): 1/8 of Preshower yield to be tested
 SoLID Collaboration Meeting, July 9-10, 2014
 38

Cost Estimation

based on 1800 modules, IHEP cost includes 30% overhead

	Year-1	Year-2	Year-3	Year-4	Sum	Contrib	Request
Shower	315	1870	655	132	2972		2972
Modules							
PreShower	80	180	100	30	390		390
Modules							
SPD Mod-	30	30	5		65		65
ules							
WLS Fiber	80	100	39		219		219
Clear Fiber	150	250	126		526		526
Fiber Con-	100	175	86		361		361
nectors							
Shower	100	200	104	50	454		454
PMTs							
PS	80	120	34	30	264		264
MAPMTs							
SPD	30	30	6		66		66
MAPMTs							
Assembling	30	30	35	40	135		135
and Testing							
FTE	4	4	4	4	16	4	12
Shipping	10	20	10	10	50		50
Total-EC-	1005	3005	1200	292	5502		5502
cost							
Total-EC-	4	4	4	4	16	4	12
FTE							

To Do

- SPD embedding 3mm and 5mm tiles ordered from SDU
- Shower: characterize MIP for COMPASS module, prototyping expensive!
- PMT/MAPMT testing: timing, base w/ preamp, UVa/JLab/SDU
- General fiber testing: rad hardness, connector prototype

- simulation PID: Preshower, SPD # of p.e. on PID
- simulation SPD: effect on MRPC, radial segmentation
- Support structure design (ANL/P.R.)

Preshower light collection simulation

- Simulation by Kai Jin: Dependence on # of turns agree with data; absolute efficiency seems to be reasonable
- Previously assumed SPD light yield to be 1/4 of Preshower (scale by thickness), but light collection efficiency only depend on fiber routing and # of turns → yield for SPD will be (1/4)*(1/2) of Preshower if using 3 turns of fiber and same groove density → readout needs careful study.
- 3mm and 5mm hexagons ordered (SDU) for testing SPD light collection

Design Consideration 1: Pb/scintillator ratio

Experiment	COMPASS	PANDA	KOPIO
Pb Thick/Layer (mm)	0.8	0.3	0.28
Sci Thick/Layer (mm)	1.5	1.5	1.5
Energy Res. a/sqrt(E)	6.5%	~3%	~3%
Rad. length, X ₀ (mm)	17.5	34	35
Total rad length in X_0	22.5	20	16
Moliere radius (mm)	36	59	60
Typical Detecting Energy	101~102GeV?	<10GeV	<1GeV
Lateral Size (cm)	~4×4	11×11	11×11
Active depth(cm)	400	680	555

Thinner Pb layers give better energy resolution, but requires more layers → Balancing between energy resolution and module length

Design Consideration 1.1: Pb/scintillator ratio

 Minimize scintillator ratio while reaching 100:1 intrinsic pion rejection → 0.5mm Pb/1.5 mm Scint. (BASF143E) per layer. [4.5-5%/sqrt(E)]

Design Consideration 1.3: Total Length

Design Consideration 1.4: Preshower Thickness

• 2X Pb efficiently reject pions and add to radiation hardness

Understanding Preshower light collection

- Typical scintillator efficiency: (10-15)% (google search), 2-3eV/photon → 5E7 photons/(GeV of energy deposit)
- light collection/absorption of WLS fiber from Kai's simulation: <u>0.02</u> for 4 turns, \$1mm, \$9cm-groove (200ppm) fiber, printer paper wrapping → 1E6 photos/GeV
- QE of Y11 dye: unknown, assume to be 100%
- WLS fiber trapping of emitted light: 3% for single-clad, 5% for multi-clad → 5E4 photons/GeV
- PMT QE: assume 20% → 1E4 photons/GeV
- WLS fiber attenuation: 3m gives 0.651 (if decay length 3.5m) or 0.472 (2.0m) → (5-6.5)E3 photons/GeV → (20-26) p.e. for MIP response of 20-mm thick Preshower hexagon (4MeV deposit), consistent with the observed 20-ish p.e. in the lab.