SoLID Simulation Software Development

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the SoLID Software Group

July 9, 2014

• Several active collaborators in software developement:

Seamus Riordan	University of Massachusetts, Amherst
Ole Hansen	Jefferson Lab
Richard Holmes	Syracuse University
Xin Qian	Brookhaven
Lorenzo Zana	Edinburgh
Zhiwen Zhao	Old Dominion/JLab

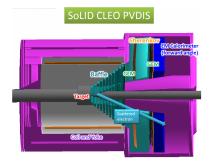
- Framework Overview
- Event generators
- GEM digitization
- Optics

Software Goals

Ultimate software goals in planning SoLID:

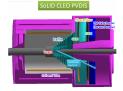
- Optmize figure-of-merit for experiments
- Understand experimental background rates and asymmetries
- Optimize detector designs and verify experimental needs
 - Tracking detectors
 - PID
 - Calorimetery
- Understand magnetic optics and produce optimized PVDIS baffle design
- Produce fully digitized simulated experiment events for analysis

Design philosophy:

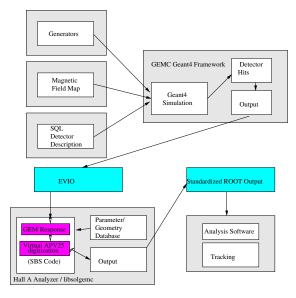

- Use modern simulation package
- Have flexible event input for stand-alone generators
- Have standard set of output
- Avoid hardcoding geometries to allow ease of design changes
- Avoid reinventing the wheel

(sol)gemc Overview

- GEANT3/comgeant used for original PVDIS and SIDIS proposals, but no longer supported
- Geant4 still actively being developed, can be implemented to meet our needs


GEMC - Geant4 base:

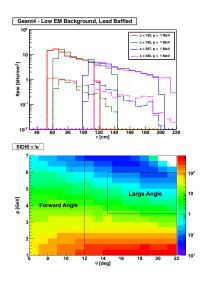
- Originally developed for CLAS12 simulations
- Uses SQL (or stand alone with v2.0) for storing geometry,materials,fields - no hardcoded geometries
 - perl script interface for generating geometries
 - Magnetic field maps are stored locally but described in tables



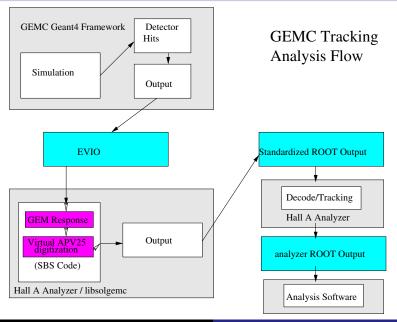
(sol)gemc Overview

- GEMC, cont'd
 - Advanced GUI and visualization included
 - Modularized event hit processing
 - Input using LUND format text file tables
 - Output to EVIO used in JLab CODA data
 - Data organized into banks storing float and integer data
 - Tools available to decode into ROOT or other formats
 - solgemc extension
 - Can replace/add capabilities without interfering with gemc
 - Extend data input formats
 - SOLLUND format includes event weights
 - Write new hit processes, customize output data
 - libsolgem
 - Additional library for analysis
 - Built using Hall A analyzer, ROOT, evio as toolkit

Framework Diagram


Event Generators

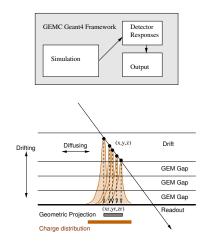
Written several stand-along event generators


- Standardized output for GEMC
- DIS rates, PV asymmetries with CTEQ6
- π^{\pm} , $\pi^{0} \rightarrow \gamma \gamma$, K^{\pm} , p with Wiser code
 - Param. SLAC data from π prod. with equivalent γ approx.
- Elastic with nucleon FFs

To incorporate:

- Λ decay self-analyzing (exists)
- Radiative effects have working group
- π asymmetries (need model)

Framework



Seamus Riordan — SoLID Software SoLID Software 9/18

GEMC Integration with SBS GEM Code

Overview

- GEMC outputs raw hits in G4 volumes
- Wrote generic interface for postprocessing in libsolgemc
- Can be extended to other detector systems
- Digitization needs to have several regions in GEM read out
 - Need drift gap *E*_{dep}, gap entrance, exit, readout plane positions

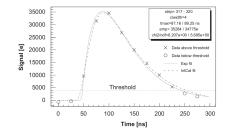
 GEM response parameters tuned on realistic responses observed at $\mathsf{COMPASS}$

- Discrete ionization points and energy deposited defined by Geant4, written out
- Poisson defines distribtion, average number of pairs given by

$$\bar{n}_{
m ion} = \Delta E/W_i$$

• Diffusion and drift, governed by diffusion coefficient *D*, assume contant *v*

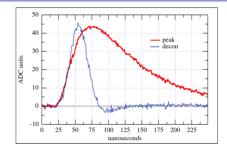
$$\sigma_s(t) = \sqrt{2Dt}$$


GEM Response - Gain, Time

• Multiplication by Furry or Poisson distribution

$$f_{\rm Furry} = rac{1}{\overline{n}} \exp\left(-rac{n}{\overline{n}}
ight)$$

- Now have Gaussian distribution associate with set of strips (strip geometry first relevant here)
- Timing given by amplitude A and time constant T_p

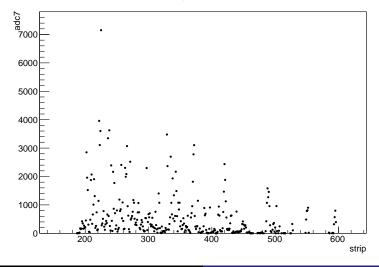

$$v = A \frac{t}{T_p} \exp\left(-t/T_p\right)$$

Digitization - APV25

APV25 Chips used for digitization

- Provides zero supression
- Adjustable shaping time
- Pipelined readout into custom VME
- Multipeak timing analysis

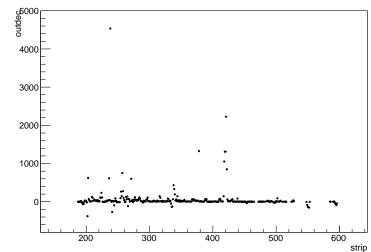
- Using the timing shape from above, online peak finding can be done with three samples
- Using a CR-RC filter and form of timing on previous page, only three samples are necessary to find peak amplitude


$$s_k = w_1 v_k + w_2 v_{k-1} + w_3 v_{k-2}$$

 $w_1 = e^{x-1}, w_2 = -2e^{-1}/x, w_3 = e^{-x-1}/x$

 $x = \Delta t / T_p$, Δt is sampling interval S. Gadomski, et al., Nucl. Instr. and Meth. A 320 (1992) 217.

Digitization Results


• Now getting first full simulation digitization results

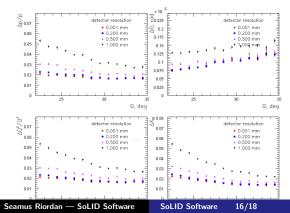
One PVDIS Background Event - No Deconvolution

Digitization Results

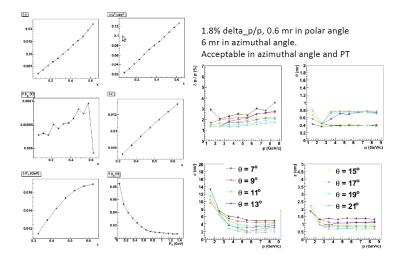
• Now getting first full simulation digitization results

One PVDIS GEM Event - Deconvoluted

Seamus Riordan — SoLID Software SoLID Software 14/18


Optics

Rates for 1 μ A:										
E	Rate Range			p Range			p Spread			
[GeV]	[Hz/mm ²]			[GeV]			[%]			
4.4	0.5	-	22	2.2	-	3.5		15		
8.8	$2 imes 10^{-3}$	-	0.15	3.0	-	6.0	15			
11	$5 imes 10^{-4}$	-	0.025	3.0	-	7.0	15			
						Ε[GeV]	t[hr]		
To got a	4.4	0.006								
To get at least 200/cm/sector at 50 μ A: 8.8								1.6		
							11	6		


- $\bullet\,$ Need to calibrate $2-6~{\rm GeV}$ for the experiment
- 8.8 matches that pretty well for p range at given θ
- Few days at 6.6 and 8.8 probably gives very good *p* coverage. Combining with 4.4 GeV with field scan would probably be sufficient
- Working on simulated calibration

PVDIS Resolution

- Previous studies showed that multiple scattering effects will dominate over GEM resolutions in PVDIS
- Reconstructed variables fit to uniform field equations with perturbations
- With 6° wires and real field maps, get $\delta Q^2 \sim 1.5\%$, $\delta x \sim 1\%$, $\delta z \sim 0.7$ mm

SIDIS Resolution

- Resolution for SIDIS kinematics also sufficient
- $\bullet\,$ Multiple scattering with $^3\mathrm{He}$ target effects negligable

Seamus Riordan — SoLID Software SoLID Software 17/18

- Development of necessary software inplace, portions ongoing
- Suitable framework chosen for scale of project and needs
- Realistic event generators developed
- Auxiliary software for digitization available and is useable for tracking