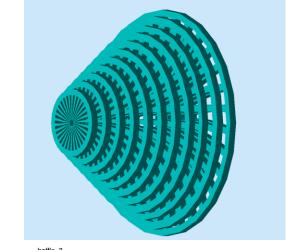
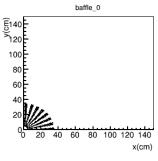

Study of SoLID Baffle, Background and Trigger

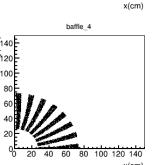
Zhiwen Zhao
UVa, ODU&JLab
2014/07/09

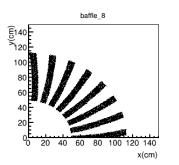
SoLID (Solenoidal Large Intensity Device)

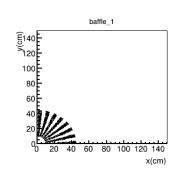
- Unique device combines large acceptance and high intensity
- Optimize the design accordingly

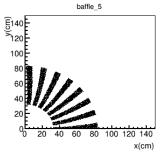

Estimation of Radiation and Luminosity

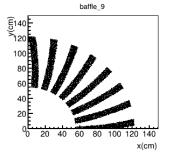

	PVDIS	SIDIS ³ He
Beam	50uA	15uA
Target	LD2 40cm	10amg He3 40cm
Window	Al 2*100um	Glass 2*120um
Radiation length (target)	5.4e-2	0.8e-3
Radiation length (window)	2.25e-3	3.4e-3
Radiation length (total)	5.6e-2	4.2e-3
Luminosity (target)	1.27e39	3e36
Luminosity (window)	1e37	3.7e36
Luminosity (total)	1.27e39	6.7e36
Comment	baffle	target window collimator

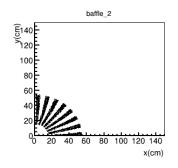

PVDIS Baffle

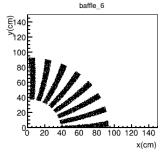

1st to 11th, 9cm thick lead plane each

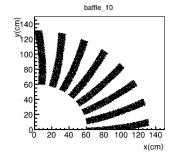

Placed right after the target, enough material to block photons, pions and secondary particles.

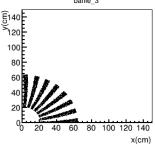


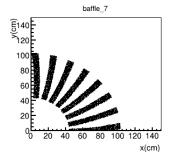


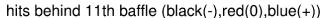


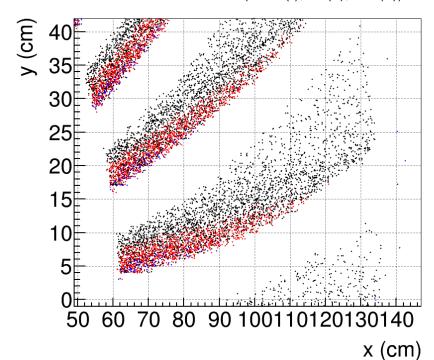


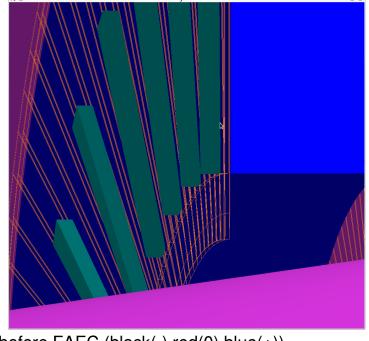




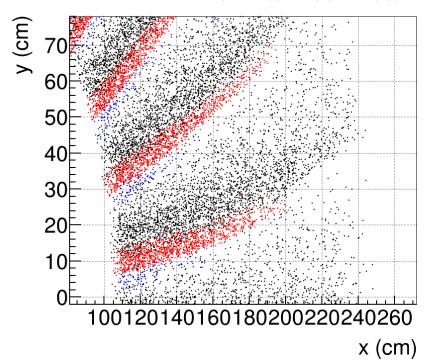


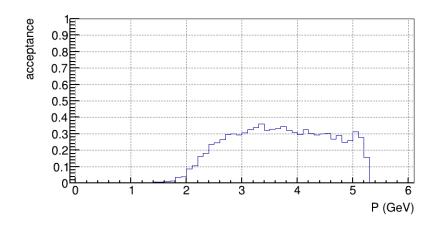


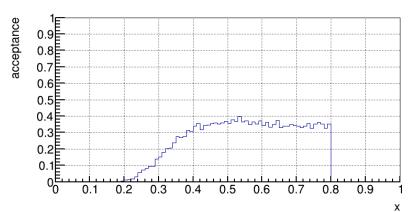

Design guideline: Follow charge particle bending in SoLID CLEO field, preserve the same azimuthal slice and block line of sight


PVDIS Baffle

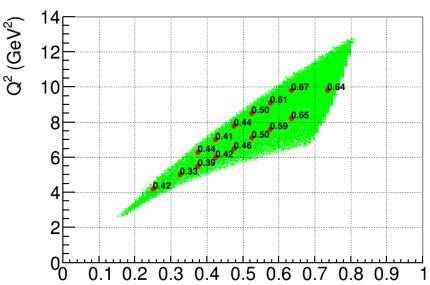
12th, 5cm lead plane (EC photon block)

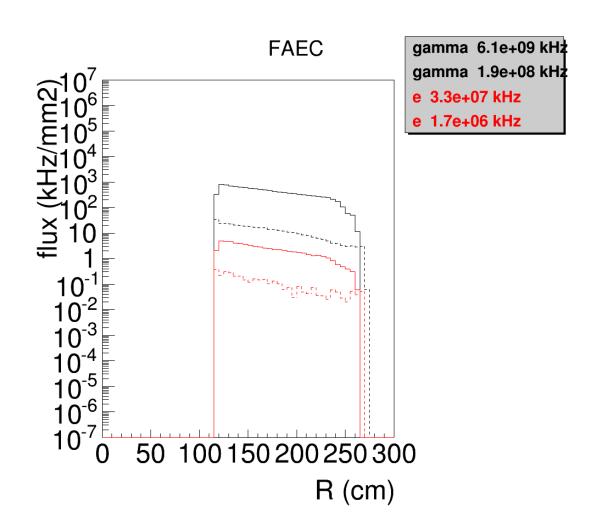

High energy electrons has least bending, only separate from photons before EC



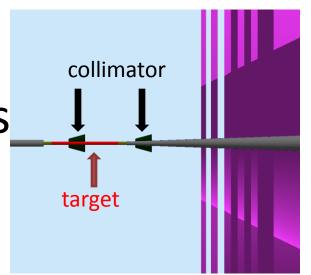


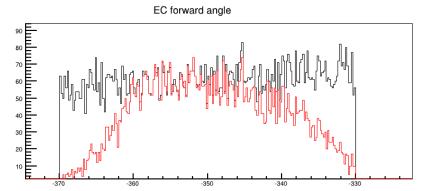
hits before FAEC (black(-),red(0),blue(+))

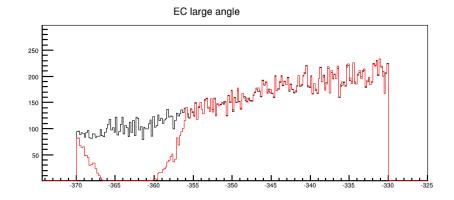

PVDIS Baffle: Impact on e(DIS)


- e(DIS) flat ~30%
 acceptance at high P
 and high x
- Ensure good FOM

Asymmetry Uncertainty (%) with 120 days of 85% polarized 50uA electron beam on 40cm LD2 target

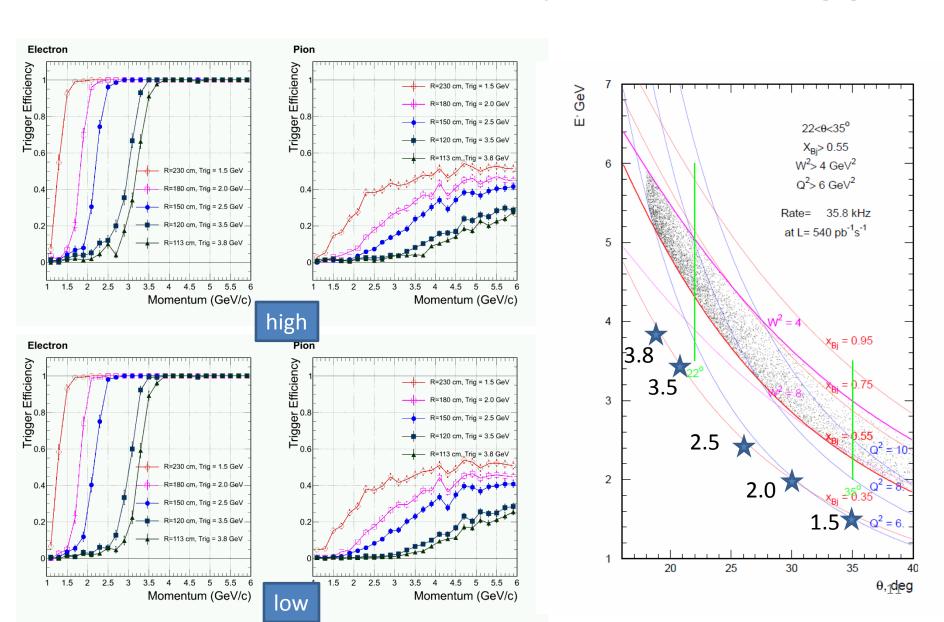

PVDIS Baffle: Impact on Background


EM background on FAEC reduce by factor 20 - 30

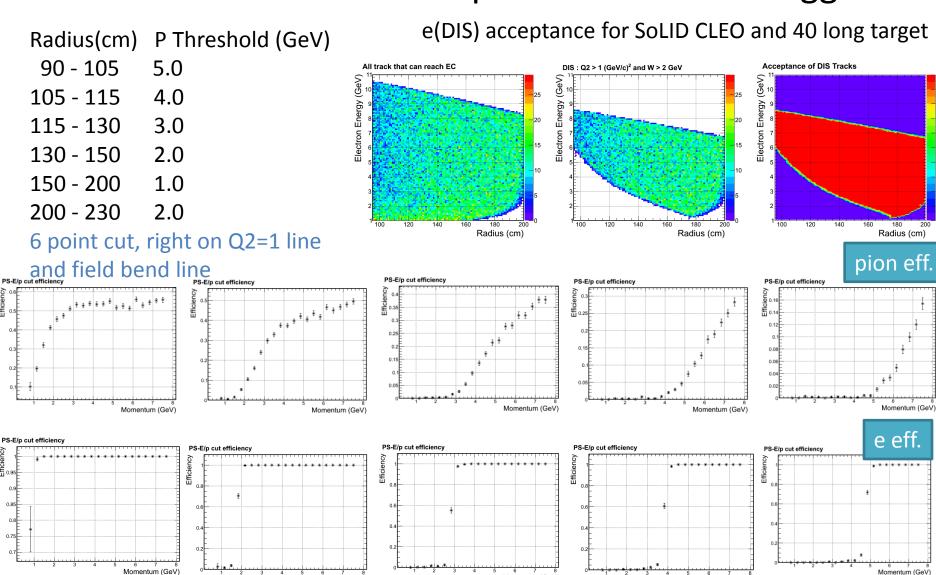


SIDIS ³He Target window Collimators

- A pair of Tungsten
 collimators are optimized
 to block both low energy
 EM particles and hadrons
 from target windows into
 forward angle detectors
- The accepted particles at forward angle and large angle EC are shown with (red) and without (black) the collimators


Backgroud Study Procedure

- SoLID full setup in GEMC (Geant4) with realistic materials
- EM background produced from 11GeV e- on different targets, according to the physics models in Geant4
- Hadron background, generated from event generators (Wiser fit) on both target and target windows, then passed into GEMC to produce secondary particles according to the physics models in Geant4


Trigger Rate Study Procedure

- Use simulation results from the background study
- Different detectors with trigger conditions
- Estimate trigger rate from individual detectors
- Estimate random coincidence trigger rate from a set of detectors

PVDIS FAEC Radius-dependent Trigger

SIDIS ³He FAEC Radius-dependent Electron Trigger

Momentum (GeV)

Momentum (GeV)

Momentum (GeV)

PVDIS FAEC Trigger Rate

region	full	high	low	
rate entering the EC (kHz)				
e^-	413	148	265	
π^-	5.1×10^{5}	2.7×10^{5}	2.4×10^{5}	
π^+	2.1×10^{5}	1.0×10^{5}	$1.2 imes 10^5$	
$\gamma(\pi^0)$	8.4×10^{7}	$4.2 imes 10^7$	$4.3 imes 10^7$	
p	5.5×10^{4}	2.4×10^{4}	3.1×10^{4}	
sum	8.5×10^{7}	4.2×10^{7}	4.3×10^{7}	
trigger rate for $p > 1$ GeV (kHz)				
e^-	321	80	231	
π^-	4.8×10^{3}	$3.4 imes 10^3$	1.4×10^{3}	
π^+	0.28×10^{3}	0.11×10^{3}	0.17×10^{3}	
$\gamma(\pi^0)$	4	4	0	
p	0.18×10^{3}	0.10×10^{3}	0.08×10^{3}	
sum	5.6×10^{3}	3.7×10^{3}	1.9×10^3	
trigger rate for $p < 1 \text{ GeV (kHz)}$				
sum	$(3.1 \pm 0.7) \times 10^3$	$(1.6 \pm 0.4) \times 10^3$	$(1.5 \pm 0.4) \times 10^3$	
Total trigger rate (kHz)				
total	$(8.7 \pm 0.7) \times 10^3$	$(5.3 \pm 0.4) \times 10^3$	$(3.4 \pm 0.4) \times 10^3$	

PVDIS Trigger Rate

- PVDIS setup has 30 sectors, rates below are for one sector
- 0.29MHz EC trigger rate
- 2MHz Cherenkov trigger rate
- EC+LGCC within a 30ns window

 $20 \text{ kHz} = 0.29 \text{MHz} \times 2 \text{Mhz} \times 30 \text{e-9ns}$

SIDIS ³He FAEC and LAEC Trigger Rate

region	FAEC	LAEC		
rate entering the EC (kHz)				
e^-	93.4	18.7		
π^-	5.36×10^{3}	1.55×10^{4}		
π^+	5.96×10^{3}	1.66×10^4		
$\gamma(\pi^0)$	1.52×10^{5}	2.43×10^{5}		
$e(\pi^0)$	6.52×10^{3}	2.04×10^{3}		
p	1.86×10^{3}	6.16×10^{3}		
electron trigger rate (kHz)				
e^-	74.2	11.68		
π^-	500	5.16		
π^+	548	5.12		
$\gamma(\pi^0)$	896	12.5		
$e(\pi^0)$	43	0.14		
p	109	2.15		
sum	2170	36.75		
MIP trigger rate (kHz)				
e^-	93.4			
π^-	5240			
π^+	5800			
$\gamma(\pi^0)$	6760			
$e(\pi^0)$	772			
p	1732			
sum	2×10^4			

SIDIS ³He Trigger Rate

Within a 30ns widow, reduction factors are

LGCC ~50 (pion,proton)

MRPC+SPD ~20 (gamma)

SPD ~5 (gamma)

FAEC electron trigger rate

```
2170 kHz -> 129.7 kHz (LGCC and MRPC+SPD)
```

LAEC electron trigger rate

(SPD)

FAEC charged particle (MIP) trigger rate
 20 MHz -> 14 MHz (MRPC+SPD)

 Radom coincidence trigger rate combining electron and charged particle trigger within a 30ns window

$$65.2kHz = (129.7+25.5)kHz*14MHz*30ns$$

Summary

 Both SoLID SIDIS and PVDIS setups are designed to handle the required luminosity

 It could be extended to other physics which needs such luminosity