DDVCS with SoLID

Alexandre Camsonne Hall A SoLID collaboration meeting May 15th 2015

DVCS / Double DVCS $\gamma^* + p \longrightarrow \gamma'(*) + p'$

└───→ **│**+ ♣ │-

Guidal and Vanderhaegen : Double deeply virtual Compton scattering off the nucleon (arXiv:hep-ph/0208275v1 30 Aug 2002) Belitsky Radyushkin : Unraveling hadron structure with generalized parton distributions (arXiv:hep-ph/0504030v3 27 Jun 2005)

DDVCS cross section

•VGG model

•Order of ~0.1 pb = 10⁻³⁶cm²

•About 100 smaller than DVCS

•Virtual Beth and Heitler

•Interference term enhanced by BH

•Contributions from mesons small when far from meson mass

Double Deeply Virtual Compton Scattering

Kinematical coverage

- DVCS only probes $\eta = \xi$ line
- Example with model of GPD H for up quark
- Jlab : Q²>0
- Kinematical range increases with beam energy (larger dilepton mass)

Observable

$$\begin{cases} A_{\rm LU}^{\sin\phi} \\ A_{\rm LU}^{\sin\varphi\mu} \end{cases} = \frac{1}{\mathcal{N}} \int_{\pi/4}^{3\pi/4} d\theta_{\mu} \int_{0}^{2\pi} d\varphi_{\mu} \int_{0}^{2\pi} d\phi \left\{ \frac{2\sin\phi}{2\sin\varphi_{\mu}} \right\} \frac{d^{7}\overrightarrow{\sigma} - d^{7}\overleftarrow{\sigma}}{dx_{B} \, dy \, dt \, d\phi \, dQ'^{2} \, d\Omega_{\mu}} \\ \propto \Im \left\{ F_{1}\mathcal{H} - \frac{t}{4M_{N}^{2}} F_{2}\mathcal{E} + \xi(F_{1} + F_{2})\widetilde{\mathcal{H}} \right\},$$

Kinematic coverage

CLEO muon detector

116

D. Borioletto et al. / Muon identification detector for CLEO II

Fig. 2. Cross section of a plastic proportional counter.

Fig. 3. Partial cross section of a unit, showing the slightly staggered three layers of counters, interleaved with foam boards carrying the copper pickup strips on one side and copper shield on the other.

SoLID JPsi Setup

 Particle can be accepted by both forward and large angle detectors

acceptance

Some low

 energy muon
 are lost,
 especially at
 large angle

Count Estimation

• 11GeV, 3uA 1cm LH2 target, 1e37/cm2/s, 50 days, 85% eff.

Decay pair accepted at both forward and large

- Topology of detecting scattered ele and decay pair is best
- plots in the next slides are only for this topology with cut Q2>1 applied

Particle acceptance

Decay angle

Before cut 3<Q'2<9

After cut 3<Q'2<9

kinematics

Before cut 3<Q'2<9

kinematics

After cut 3<Q'2<9

background

Pion rate before and after iron flux return

Kinematical coverage JPSi setup

Q2:Xbj

Counts J/psi setup 60 days at 10³⁷ cm⁻²s⁻¹

Phi CM distribution Q^2=3 x_bj=0.17 Qp=2.5 GeV^2 J/¥ config Lum=10⁵⁷ cm²s⁻¹ 60 days

Cross sections / Asymmetry

Dedicated setup

- Target moved 2m from Jpsi position inside and switch to 45 cm target
- Iron plate from 3rd layer yoke in fron and behind calorimeter
- Remove Gas Cerenkov
- Try to reach 10^38 cm⁻
 ²s⁻¹
- 10 uA on 45 cm target

Kinematical coverage

Q2:Xbj ((Q2>Qp2&&theta_e>24&&theta_e<60)/148182850"W_tot_unpol*1e-9*1e-24*1e38*3600*24*60*5.03202159009792069e+02)

Counts

Phi CM distribution Q^2=2.5 to 3 x_bj=0.13 to 0.17 tt=0.25 to 0.35 60 days Lum=1.10²⁶ cm⁻²s⁻¹

Eta and xi coverage

 ξ vs |\eta| Q^2=3 x_bj=0.16 Qp=2.5 GeV^2 $\,$ 60 days Lum=10^{^{38}} cm^{^2} s^{^{-1}}

Eta Xi coverage large bin

 ξ vs |\eta| Q^2=3 x_bj=0.16 Qp=2.5 GeV^2 60 days Lum=10³⁸ cm⁻²s⁻¹

Higher luminosity ?

- Current could go up to 60 uA
- Tracker occupancy and photon background
 - Reduce amount of Copper in GEM
 - Micromegas option
 - Build smaller chambers and add more channels
 - Study complement with 2D pad readout
 - Superconducting tracker option
- Calorimetry
 - Study liquid scintillator and cryogenics calorimeter option
 - Superconducting detector to replace PMT (1 ns width pulse to increase rate capability)
- Cerenkov
 - Superconducting detector to replace PMT (1 ns width pulse to increase rate capability)
 - HBD type Cerenkov for Large Angle calorimeter

6. 10³⁸ cm⁻²s⁻¹ Technically doable mostly matter of cost

Conclusion

- CLEO muon detector is a good opportunity to look at dimuon physics
- Parasitic measurement on J/Psi give a first measurement of DDVCS with low statistics
- Dedicated setup could increase luminosity by a factor of 10
- High statistics would allow binning in different variables to look a binning in Q'2 to probe xi eta surface with xi different of eta of GPDs