SoLID SIDIS Physics Case

SoLID Collaboration Meeting September 11-12, 2015

Haiyan Gao Duke University, Duke Kunshan University

Overview of SoLID

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

A Large Acceptance Detector AND Can Handle High Luminosity (10³⁷-10³⁹)

- Take advantage of latest development in detectors and data acquisitions
 - Reach ultimate precision for SIDIS (TMDs), providing three-dimensional imaging of nucleon in momentum space
 - PVDIS in high-x region providing sensitivity to new physics at 10-20 TeV, and QCD
 - Threshold J/ψ , probing strong color field in the nucleon, trace anomaly

•5 highly rated experiments approved

Three SIDIS experiments, one PVDIS, one J/ ψ production

Run group experiments: di-hadron, Inclusive-SSA, and much more ...

•Strong collaboration (250+ collaborators from 70+ institutes, 13 countries) Significant international (Chinese) contributions and strong theoretical support

Unified View of Nucleon Structure

Leading Twist TMDS

→ Nucleon Spin→ Quark Spin

		Quark polarization			
		Un-Polarized	Longitudinally Polarized	Transversely Polarized	
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \begin{array}{c} \bullet \\ \bullet \\ Boer-Mulder \end{array}$	
	L		$g_1 = +$ Helicity	$h_{1L}^{\perp} = \checkmark - \checkmark$	
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\bullet} - \underbrace{\bullet}_{\text{V}}^{\bullet}$	$g_{1T}^{\perp} = -$	$h_{1T} = \underbrace{{}_{}{}}_{}{}_{}{}_{}{}_{}{}_{}{}_{}{}_{}{}_{}{}_{}{}_{}{}}_{}{}_{}{}}_{}{}_{}{}}_{}{}_{}{}}_{}{}_{}{}}_{}{}}_{}{}_{}{}}_{}{}_{}{}}_{}{}_{}}{}_{}{}}_{}{}}_{}{}_{}}{}_{}{}}_{}{}_{}{}}_{}{}}_{}{}}_{}{}_{}{}}_{}{}}_{}{}}_{}{}}_{}{}}_{}{}}_{}{}}_{}{}_{}{}}_{}{}}_{}{}}_{}{}_{}{}}{}{}{}{}{}}{}{}}{}{}}{}{}{}{}}{}{}}{}{}}{}{}}{}{}{}{}}{}{}}{}{}}{}{}}{}{}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}{}}{}}{}{}}{}{}}{}{}}{}{}}{$	

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He @ 90 days, **rating A**

- **E12-11-007:** Single and Double Spin Asymmetry on ³He @ 35 days, rating A
- **E12-11-108:** Single and Double Spin Asymmetries on Transverse Proton @120 days, rating A

³He

 π^{-}

p

p

Two ``bonus" experiments approved

International collaboration with 200 collaborators from 11 countries Key of SoLID-Spin program: Large Acceptance

- + High Luminosity
- → 4-D mapping of asymmetries
- \rightarrow Tensor charge, TMDs ...
- →Lattice QCD, QCD Dynamics, Models.

 π^+

Transversity and Tensor Charge

•Tensor charge (0th moment of transversity): intrinsic property (charge, magnetic moment), also input for beyond Standard Model physics searches

Lattice QCD, Bound-State QCD (Dyson-Schwinger), Light-cone Quark Models, ... •Global model fits to experiments (SIDIS and e+e-)

•SoLID with trans. polarized n & p \rightarrow determination of tensor charges for d & u *Colling Asymptotics Tensor Charges*

Collins Asymmetries

Total 1400 bins in x, Q^2 , P_T and z for 11/8.8 GeV beam X. Qian et al in PRL 107, 072003

12-GeV SoLID projections together with existing extractions and predictions

Transversity and Tensor Charge

•Tensor charge (0th moment of transversity): intrinsic property (charge, magnetic moment), also input for beyond Standard Model physics searches (EDM)

Lattice QCD, Bound-State QCD (Dyson-Schwinger), Light-cone Quark Models, ... •Global model fits to experiments (SIDIS and e+e-)

•SoLID with trans. polarized n & p \rightarrow determination of tensor charges for d & u

Collins Asymmetries

Tensor Charges

Total 1400 bins in x, Q^2 , P_T and z for 11/8.8 GeV beam X. Qian et al in PRL 107, 072003

12-GeV SoLID projections together with existing extractions and predictions

Projected measurements in 1-D (x)

7

Projected measurements in 1-D (x)

7

SoLID-SIDIS compared with SBS & CLAS12

Factor	SoLID E12-10-006 (A) (neutron)	SBS E12-09-018 (A-) (only neutron approved)	SoLID E12-11-108, A (proton)	CLAS12 C12-11-111 (only proton conditional approved)
Targets	He3 ("n")	He3 ("n")	NH3("p")	HDice ("p")
Polarization (P)	65% (60% in beam)	65% (<60% in beam)	70%	60%
Dilution-Factor (f)	0.15~0.3	0.15~0.3	0.13	0.33*80%
Polarized Lumonisity (L)	1.0x10 ³⁶ cm ⁻² s ⁻¹	$2.7 \mathrm{x} 10^{36} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.0x10 ³⁵ cm ⁻² s ⁻¹	$\frac{1.4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}}{\text{(quoted: 5.10^{33} \text{ cm}^{-2} \text{s}^{-1})}}$
Solid-Angle $({\it \Omega}_e{}^*{\it \Omega}_h)$	0.067 (e: θ→8°~25°, Φ→0°~360°. h: θ→8°~14.5°, Φ→0°~360°)	Quoted: 0.0026 (h-SBS: $\theta \rightarrow 26.5^{\circ} \sim 35^{\circ}$, $\Phi \rightarrow -24^{\circ} \sim 24^{\circ}$ e-BB: $\theta \rightarrow 10^{\circ} \sim 19.5^{\circ}$, $\Phi \rightarrow -30^{\circ} \sim 30^{\circ}$)	0.067 (e: θ→8°~25°, Φ→0°~360°. h: θ→8°~14.5°, Φ→ 0°~360°)	$ \begin{array}{c} 1.32 \text{ sr} \\ (e: \theta \rightarrow 6.5^{\circ} \sim 40^{\circ}, \\ \Phi \rightarrow 0^{\circ} \sim 360^{\circ} * 80\%. \\ \text{h: } \theta \rightarrow 5^{\circ} \sim 40^{\circ}, \\ \Phi \rightarrow 0^{\circ} \sim 360^{\circ} * 80\%) \end{array} $
FOM in the same kine. (L*P2*f2*Omega)	5.43x10 ³²	5.69x10 ³¹	5.55x10 ³¹	4.64x10 ³¹ (2.35x10 ³⁰ with SoLID angular range)
SIDIS π^+ Events* P^2*f^2	100M	0.21M	5.06M	3.07M (2.02M with SoLID acceptance)

Based on the 1-D Projection results

SoLID vs. SBS Neutron-SIDIS Comparison

Figure of Merit comparison at the same kinematic setting with the same cuts.

SoLID vs. SBS Neutron-SIDIS Comparison

SoLID bins are to match the SBS ones and thus are not optimized for SoLID kinematics

SoLID vs. SBS Neutron-SIDIS Comparison

SBS:

 $0.1 < x < 0.7, 0.2 < z < 0.7, 0 < p_T (GeV) < 1.2$ •3D binning:

•Typically 120 bins, dependence on Q2 gives fully-differential analysis

SoLID:

4D-MAPPING: $0.05 < x < 0.6, 0.3 < z < 0.7, 0 < p_T (GeV) < 1.0, 1.0 < Q^2 < 7.0 GeV^2$ •1400 bins

Sivers A_{UT} , $n(e,e'\pi^+)X$ vs. x, 40 days (a) 11 GeV

SoLID vs. CLAS12 Proton-SIDIS Comparison

SoLID data were rebinned to match CLAS12's bins.

SoLID vs. CLAS12 on Proton-SIDIS Comparison

- SoLID data were rebinned to match CLAS12's bins.
- CLAS12 Projection was redone with SoLID's Acceptance and Kinematic cuts (Courtesy of Luciano Pappalardo).

Impact on Tensor Charge: SoLID vs. CLAS12

- A model dependent study (directly compare to Alexei's work data fit)
- Using multi-dimensional binning results from SoLID and CLAS12 (match SoLID's cuts)
- Only statistical errors are considered for the projected results.

Ongoing work by Alexei Prokudin, Nobuo Sato, Kalyan Allada and Zhihong Ye

What else can we learn in SoLID?

- Test QCD and TMD factorization
- Sea quark TMDs, esp BM $h_1^{\wedge q}$ and Sivers $f_{1T}^{\wedge q}$ (Kaon capability)
- Twist-3 TMDs, e.g. $f_L^{\wedge q} h_L^q f_T^q h_T^q h_T^{\wedge q} f_T^{\wedge q} g_L^{\wedge q} g_T^{\wedge q}$
- Target fragmentations (fracture functions)

Summary of SoLID SIDIS program

- SoLID: unique combination of large acceptance and high luminosity truly utilize 12-GeV upgrade to its full potential, most precise data from spin-dependent SIDIS
- SoLID SIDIS: comprehensive program with both proton and ``neutron'' targets in the same setup allows for flavor separation with better control of systematics
- Multi-dimensional binning of the data with high precision help reduce theoretical uncertainties in extracting TMDs
- Apart from three approved experiments, two ``bonus'' experiments will accumulate data without additional beam time, providing complementary way to access transversity, and new information, and expect more such bonus

SBS Coverage

BigBite:

counter, a two-layer electromagnetic calorimeter and a scintillator hodoscope. The value of the solid angle for 60 cm long target was found to be of 45 msr. $\Omega_{e\pi} = 0.0019 (0.0024 sr)$

SBS:

For the proposed SIDIS experiment, the magnet will be placed at the distance 245 cm from the target to the return yoke, providing a solid angle of 42(53) mer. The magnet inter-

From their kinematic coverage plot:

Table 5.1: DIS events selection, kinematical cuts and mai

	Unit	Proposed Exp.	HERMES	HallA 6 GeV
Q^2	GeV^2	> 1	> 1	> 1.31
W	${\rm GeV}$	2.3	> 3	> 2.33
W'	${\rm GeV}$	> 1.5		> 1.5
y		< 0.9	< 0.95	
			≥ 0.1	
z		> 0.2	> 0.2	
		< 0.7	< 0.7	

2015/9/11

Figure 5.1: 11 GeV kinematics, phase space of the two detected particle momenta and angles, with the SIDIS cuts applied.

CLAS Coverage

From their 1D projection stat. error bars: $N(\pi+)=3.07M$, $N(\pi-)=0.87M$; The proposal didn't mention whether they are corrected by Pol&Dilution or not.

TMD Projection

- Global fit to the world data
- Obtain a set of parameters for each TMDs
- Use SoLID-SIDIS' kinematic variables and the fitted parameters to generate pseudo-data based on the current uncertainties
- Re-weight the pseudo-data with the projected statistical errors from SoLID

$$\chi_{k}^{2} = \sum_{i=1}^{Bin} \left(\frac{A_{i}^{SoLID} - A_{i}^{Fit}}{A_{i}^{Fit}} \right)^{2} \quad w_{k} = e^{-\frac{1}{2}\chi_{k}^{2}} / \sum_{k=1}^{N} e^{-\frac{1}{2}\chi_{k}^{2}}$$

• Calculate the new expectation values and uncertainties with the new weights

$$\Big|_{w/o-SoUD} = \sum_{k=1}^{N} \frac{1}{N} O_{k} \quad \delta(O) = \sqrt{\sum_{k=1}^{N} \frac{1}{N} (O_{k} - \langle O \rangle)^{2}}$$
$$\Big|_{w/-SoUD} = \sum_{k=1}^{N} w_{k} O_{k} \quad \delta(O) = \sqrt{\sum_{k=1}^{N} w_{k} (O_{k} - \langle O \rangle)^{2}}$$

Other TMD programs at JLab

E12-09-018 at JLab Hall-A

Physics Goal: measure transverse target SSA (A_{UT}) in 3 He(e,e'h)X in the valence region- SIDIS at 8.8 and 11 GeV, luminosity: 4.10^{36} cm⁻² s⁻¹, 40 μ A-3D binning: 6 (0.1 < x < 0.7) × 5 (0.2 < z < 0.7) × 6 ($0 < p_T$ (GeV) < 1.2)</td>-Typically 120 bins, dependence on Q2 gives fully-differential analysis

SoLID E12-10-006: 1400 bins, 4D-MAPPING. 0.05 < x < 0.6, 0.3 < z < 0.7, 0 < p_T (GeV) < ~1, 1<Q² (GeV²)<8 with ΔQ^2 =2 GeV²

CLAS12 Program at 11GeV

Pol. NH₃ and ND₃ target (if pol. 10^{35} cm² s⁻¹ at 10 nA) - E12-09-007: long. pol. Measures $x(\Delta u - \Delta d)$ unpol. for multiplicity and strange PDF measurements

- E12-09-008: unpol. Measures $A_{UU}(\cos 2\phi \text{ of charged kaons}))$
- E12-09-009, long pol.
- E12-07-107, long. pol. **NH**₃ target,

Measure A_{UL} and A_{LL} (sin2\$\$\phi\$ of charged pions)

Programs complimentary to SoLID, but no competition for precision