
SoLID Software Framework

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting
September 11, 2015

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 1 / 14

Software Framework Planning

Need specifications for (at least) each of
I Simulation
I Digitization
I Databases
I File formats
I Reconstruction Framework
I Calibrations
I Physics Analysis

Formed working group w/ Simulation and Reconstruction subgroups
I Bi-weekly meetings over the summer
I Considered Hall A/B/D/Phenix & EIC frameworks for ideas
I Developing specifications
I Computing document being drafted (Private

JeffersonLab/SoLID-docs-softspec repository on GitHub)

Intended to meet long term goals

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 2 / 14

Simulation & Digitization Wishlist

Package: GEMC (Hall B). Required SoLID modifications
I Add interface to SoLID database system
I Store relevant database parameters & metadata in output
I Ensure database consistency between simulation, digitization and

reconstruction, esp. geometry
Generators etc. → Seamus’s talk, next
Digitization

I Separate, standalone package
I Could run within reconstruction framework
I Develop long-term implementation after reconstruction framework in

place
I Include trigger emulation and hardware-level digitization (e.g. ADC

reading instead of amplitude etc.)
I Write CODA (EVIO) output

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 3 / 14

Reconstruction Framework: Feature Wishlist I

General: Based on ROOT, C++ throughout
Try to combine best features of Hall A analyzer, Hall D framework and
Phenix’s Fun4All
User experience

I Scriptable user-interface (ROOT’s interpreter)
I Completely configurable at runtime

F Dynamic configuration of experimental setup, expandable via plugins
for new hardware/detectors

F Flexible input sources and output formats
F User-configurable output contents

I Data represented by data objects (streamable ROOT classes), produced by
data producers (“factories”). Variables directly accessible from ROOT
prompt for interactive analysis.

I File formats: ROOT (all data classes), EVIO (CODA-type data only)
I Support multi-stage analysis: DST files supported as both input and output
I Self-describing output: DSTs contain database parameters and metadata

from previous stages

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 4 / 14

Reconstruction Framework: Feature Wishlist II

Technical
I User-transparent multithreading
I Probably should require ROOT 6, C++11
I Minimize other software dependencies
I Options to sync event stream at special events (it e.g. helicity flips, scaler

events), or to preserve strict event ordering
I Optimize for low memory per core (trend for new compute nodes), i.e. share

read-only data (parameters etc.) across threads
Simulation support

I Propagate and access MC truth data for certain data classes (if input comes
from MC)

I Option for substituting any input data with MC truth data
I Support for mixing data and MC events

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 5 / 14

Impressions of Hall D Framework (JANA)

Likes
I Very general concepts. Any data in, any data out.
I Fine-grained control over analysis (at level of data objects)
I Design encourages good structuring of algorithms
I Analysis chain configures itself
I Plugin support
I Configuration parameters settable at run time
I Decent multi-threading & database support
I Very well commented code (in JANA, not DANA)

Dislikes
I Command line interface. No scripting, everything must be (re)compiled.

Design lends itself to hardcoding.
I Excessive reliance on templates. Design weaknesses affecting performance.
I Convoluted callback logic
I Difficult to handle multiple instances of a detector type efficiently.
I No output queue. Output implementation largely left to user.
I No test package
I EVIO decoder is not configurable, hardcoded for Hall-D DAQ

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 6 / 14

Some Concepts Stolen From JANA

Event sources
I Completely format-agnostic
I Read events (whatever they are) from some sort of input (files, network,

databases) into internal buffer (roughly a processing queue)
I Multiple event sources may be defined

Data Objects
I Data structures representing information of interest (e.g. hits, clusters,

tracks, PID likelihoods etc.)

Data Producers (“Factories”)
I Algorithm classes
I Produce their data objects exactly once per event (unless persistence

requested, then once per run)
I Request input data from other producers
I Lowest level data ultimately retrieved from event sources
I Run in threads, operating on thread context data

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 7 / 14

Data Objects: Toy Code

Hypothetical GEM Hit class
class GEMHit {
public:
GEMHit() {}

protected:
int strip;
double position;
double amplitude;
...
ClassDef(GEMHit,1) // maybe not needed

};

class GEMHits : public DataObject {
public:
GEMHits(const string& name) : DataObject(name) {}
virtual const char* GetClassName() { return "GEMHits"; }
const vector<GEMHit>& GetHits() { return hits; }

protected:
vector<GEMHit> hits;
ClassDef(GEMHits,1)

};

// Retrieval perhaps like so:

GEMHits* hitobj = Get<GEMHits>("plane1.hits");
const vector<GEMHit>& hits = hitobj->GetHits();
// Process "hits" ...

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 8 / 14

Database Specs (preliminary)

Single database of simple key/value pairs, accessible via a generic API
Values stored as strings. User must know type.
Indexed by run number, with support for “variations”
Complex information stored as a set of “core parameters” (geometry)
or external references (field map)
Support for version control/parameter history
Flexible backends. Hall B’s CCDB is the default backend.

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 9 / 14

Hall A Analyzer Database Example

Example Hall A DB File
[2015-02-01 14:30:00]
#–– Mapping
B.mwdc.planeconfig = u1 u1p x1 x1p v1 v1p

u2 x2 v2
u3 u3p x3 x3p v3 v3p

B.mwdc.cratemap = 3 6 21 1877 500 96
4 4 11 1877 500 96
4 17 24 1877 500 96

#–– Geometry
B.mwdc.nwires = 200 # Default
B.mwdc.u1.nwires = 141 # Fewer wires

B.mwdc.size = 2.0 0.5 0.0
B.mwdc.x1.size = 1.4 0.35 0.0

#–– Configuration
B.mwdc.u.maxmiss = 5

#–– Calibrations
B.mwdc.x1.res = 0.255

[2015-02-02 16:45:00]
only changed parameters here ...
B.mwdc.x1.res = 0.258

Podd 1.6+ Database Access
THaInterface.C:
// Set up default DB at program start, may override
THaDB* gHaDB = new THaFileDB(DB_DIR);

MyDetector::ReadDatabase(const TTimeStamp& date) {
DBRequest request[] = {
{ "planeconfig", &planeconfig, kString },
{ "MCdata", &mc_data, kInt, 0, 1 },
{ 0 }

};
Int_t err = LoadDB(date, request, fPrefix);

};

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 10 / 14

Unified simulation and analysis database API

General considerations
Single common database abstraction
Database holds “core parameters”, esp. for
geometry information
Each component expands these parameters
to a suitable internal representation
Store sets of core parameters (for relevant
run numbers) as objects in output files

Database requirements
Should be easy to set up a local database
DB should contain change history
DB should support “variations” and local
overrides of parameters
Hall B’s CCDB seems to fit the bill

Run Info

Metadata

Run Info

Metadata

Complete

database

Unified

Simulation/Analysis

Framework

Database

(text, sql?, ...)

DB API

Input Macro

IO

Read once

DetectorConstruction

Geant4/ROOT

Simulation ROOT output
CODA DAQ Binary

(real data)

SoLID analyzer

sim decoder DAQ decoder

Event processing
Relevant

database

parameters

IO

Tracks,

clusters,

PID info,

etc

Friends

Friends

Final Output ROOTfile

Hits,

detector

output

Complete

database

Hits,

detector

output

Event−by

event

Sim data/

truth data

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 11 / 14

Physics Analysis Scope, Specs (preliminary)

Standard modules
I Beam properties (position, helicity)
I Calibrated detector data
I Tracks, vertices
I 4-vectors
I PID, particle hypothesis likelihoods
I Kinematical quantities for typical reactions

Users may modify and extend provided methods (e.g. PID scheme,
kinematics)
Condition testing, event selection: Evaluate user-defined logical tests
as input filter for each module and output (similar to Hall A analyzer
test package)

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 12 / 14

Current Active Collaborators

Ole Hansen, Alex Camsonne (JLab)
Tom Hemmick, Seamus Riordan, Yuxiang Zhao (Stony Brook)
Zhiwen Zhao, Zhihong Ye, Weizhi Xiong (Duke)
Rich Holmes, Rakitha Beminiwattha (Syracuse)

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 13 / 14

Manpower Estimate

Task Existing code (excl. ROOT) FTE-years

Core reconstruction framework, ROOT file input
and output, simulation APIs

Podd, JANA, Podd paral-
lelization prototype code

7.5

Algorithms (tracking, calorimeter clustering,
PID, physics analysis)

Various tracking proto-
types, Hall D tracking,
various clustering & PID
implementations

12

Database API, backend, object streaming Podd, CCDB 3

Decoders, EVIO input file support Podd, JANA 4.5

Farm integration, testing, optimization Halls B & D, JLab SciComp 1.5

Level 3 trigger Hall D 3

Simulation integration (see Seamus’s talk) GEMC 9

Next-level simulation efforts & design iteration
(see Seamus’s talk)

4

Sum 44.5

Ole Hansen (Jefferson Lab) SoLID Software Framework Sept 11, 2015 14 / 14

