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Software Framework Planning

Need specifications for (at least) each of
I Simulation
I Digitization
I Databases
I File formats
I Reconstruction Framework
I Calibrations
I Physics Analysis

Formed working group w/ Simulation and Reconstruction subgroups
I Bi-weekly meetings over the summer
I Considered Hall A/B/D/Phenix & EIC frameworks for ideas
I Developing specifications
I Computing document being drafted (Private

JeffersonLab/SoLID-docs-softspec repository on GitHub)

Intended to meet long term goals
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Simulation & Digitization Wishlist

Package: GEMC (Hall B). Required SoLID modifications
I Add interface to SoLID database system
I Store relevant database parameters & metadata in output
I Ensure database consistency between simulation, digitization and

reconstruction, esp. geometry
Generators etc. → Seamus’s talk, next
Digitization

I Separate, standalone package
I Could run within reconstruction framework
I Develop long-term implementation after reconstruction framework in

place
I Include trigger emulation and hardware-level digitization (e.g. ADC

reading instead of amplitude etc.)
I Write CODA (EVIO) output
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Reconstruction Framework: Feature Wishlist I

General: Based on ROOT, C++ throughout
Try to combine best features of Hall A analyzer, Hall D framework and
Phenix’s Fun4All
User experience

I Scriptable user-interface (ROOT’s interpreter)
I Completely configurable at runtime

F Dynamic configuration of experimental setup, expandable via plugins
for new hardware/detectors

F Flexible input sources and output formats
F User-configurable output contents

I Data represented by data objects (streamable ROOT classes), produced by
data producers (“factories”). Variables directly accessible from ROOT
prompt for interactive analysis.

I File formats: ROOT (all data classes), EVIO (CODA-type data only)
I Support multi-stage analysis: DST files supported as both input and output
I Self-describing output: DSTs contain database parameters and metadata

from previous stages
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Reconstruction Framework: Feature Wishlist II

Technical
I User-transparent multithreading
I Probably should require ROOT 6, C++11
I Minimize other software dependencies
I Options to sync event stream at special events (it e.g. helicity flips, scaler

events), or to preserve strict event ordering
I Optimize for low memory per core (trend for new compute nodes), i.e. share

read-only data (parameters etc.) across threads
Simulation support

I Propagate and access MC truth data for certain data classes (if input comes
from MC)

I Option for substituting any input data with MC truth data
I Support for mixing data and MC events
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Impressions of Hall D Framework (JANA)

Likes
I Very general concepts. Any data in, any data out.
I Fine-grained control over analysis (at level of data objects)
I Design encourages good structuring of algorithms
I Analysis chain configures itself
I Plugin support
I Configuration parameters settable at run time
I Decent multi-threading & database support
I Very well commented code (in JANA, not DANA)

Dislikes
I Command line interface. No scripting, everything must be (re)compiled.

Design lends itself to hardcoding.
I Excessive reliance on templates. Design weaknesses affecting performance.
I Convoluted callback logic
I Difficult to handle multiple instances of a detector type efficiently.
I No output queue. Output implementation largely left to user.
I No test package
I EVIO decoder is not configurable, hardcoded for Hall-D DAQ
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Some Concepts Stolen From JANA

Event sources
I Completely format-agnostic
I Read events (whatever they are) from some sort of input (files, network,

databases) into internal buffer (roughly a processing queue)
I Multiple event sources may be defined

Data Objects
I Data structures representing information of interest (e.g. hits, clusters,

tracks, PID likelihoods etc.)

Data Producers (“Factories”)
I Algorithm classes
I Produce their data objects exactly once per event (unless persistence

requested, then once per run)
I Request input data from other producers
I Lowest level data ultimately retrieved from event sources
I Run in threads, operating on thread context data
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Data Objects: Toy Code

Hypothetical GEM Hit class
class GEMHit {
public:
GEMHit() {}

protected:
int strip;
double position;
double amplitude;
...
ClassDef(GEMHit,1) // maybe not needed

};

class GEMHits : public DataObject {
public:
GEMHits( const string& name ) : DataObject(name) {}
virtual const char* GetClassName() { return "GEMHits"; }
const vector<GEMHit>& GetHits() { return hits; }

protected:
vector<GEMHit> hits;
ClassDef(GEMHits,1)

};

// Retrieval perhaps like so:

GEMHits* hitobj = Get<GEMHits>("plane1.hits");
const vector<GEMHit>& hits = hitobj->GetHits();
// Process "hits" ...
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Database Specs (preliminary)

Single database of simple key/value pairs, accessible via a generic API
Values stored as strings. User must know type.
Indexed by run number, with support for “variations”
Complex information stored as a set of “core parameters” (geometry)
or external references (field map)
Support for version control/parameter history
Flexible backends. Hall B’s CCDB is the default backend.
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Hall A Analyzer Database Example

Example Hall A DB File
[ 2015-02-01 14:30:00 ]
#–– Mapping
B.mwdc.planeconfig = u1 u1p x1 x1p v1 v1p

u2 x2 v2
u3 u3p x3 x3p v3 v3p

B.mwdc.cratemap = 3 6 21 1877 500 96
4 4 11 1877 500 96
4 17 24 1877 500 96

#–– Geometry
B.mwdc.nwires = 200 # Default
B.mwdc.u1.nwires = 141 # Fewer wires

B.mwdc.size = 2.0 0.5 0.0
B.mwdc.x1.size = 1.4 0.35 0.0

#–– Configuration
B.mwdc.u.maxmiss = 5

#–– Calibrations
B.mwdc.x1.res = 0.255

[ 2015-02-02 16:45:00 ]
# only changed parameters here ...
B.mwdc.x1.res = 0.258

Podd 1.6+ Database Access
THaInterface.C:
// Set up default DB at program start, may override
THaDB* gHaDB = new THaFileDB( DB_DIR );

MyDetector::ReadDatabase( const TTimeStamp& date ) {
DBRequest request[] = {
{ "planeconfig", &planeconfig, kString },
{ "MCdata", &mc_data, kInt, 0, 1 },
{ 0 }

};
Int_t err = LoadDB( date, request, fPrefix );

};
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Unified simulation and analysis database API

General considerations
Single common database abstraction
Database holds “core parameters”, esp. for
geometry information
Each component expands these parameters
to a suitable internal representation
Store sets of core parameters (for relevant
run numbers) as objects in output files

Database requirements
Should be easy to set up a local database
DB should contain change history
DB should support “variations” and local
overrides of parameters
Hall B’s CCDB seems to fit the bill
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Physics Analysis Scope, Specs (preliminary)

Standard modules
I Beam properties (position, helicity)
I Calibrated detector data
I Tracks, vertices
I 4-vectors
I PID, particle hypothesis likelihoods
I Kinematical quantities for typical reactions

Users may modify and extend provided methods (e.g. PID scheme,
kinematics)
Condition testing, event selection: Evaluate user-defined logical tests
as input filter for each module and output (similar to Hall A analyzer
test package)
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Current Active Collaborators

Ole Hansen, Alex Camsonne (JLab)
Tom Hemmick, Seamus Riordan, Yuxiang Zhao (Stony Brook)
Zhiwen Zhao, Zhihong Ye, Weizhi Xiong (Duke)
Rich Holmes, Rakitha Beminiwattha (Syracuse)
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Manpower Estimate

Task Existing code (excl. ROOT)  FTE-years 

Core reconstruction framework, ROOT file input 
and output, simulation APIs 

Podd, JANA, Podd paral-
lelization prototype code 

7.5 

Algorithms (tracking, calorimeter clustering, 
PID, physics analysis) 

Various tracking proto-
types, Hall D tracking, 
various clustering & PID 
implementations 

12 

Database API, backend, object streaming Podd, CCDB 3 

Decoders, EVIO input file support Podd, JANA 4.5 

Farm integration, testing, optimization Halls B & D, JLab SciComp 1.5 

Level 3 trigger Hall D 3 

Simulation integration (see Seamus’s talk) GEMC 9 

Next-level simulation efforts & design iteration 
(see Seamus’s talk) 

4 

Sum 44.5 
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