Hadron Elecro-Production with HallD Generator

Rakitha S. Beminiwattha

Department of Physics, Syracuse University

September $11^{\rm th}$, 2015

Rakitha S. Beminiwattha

SoLID Collaboration Meeting

September 11^{th} , 2015

1/16

Overview

Hall D Generator

Electro-Production Implementation

Initial Results

Rakitha S. Beminiwattha

SoLID Collaboration Meeting

September 11^{th} , 2015

From Last Meeting : Photo-Production Models Compared

- Total Photo-production cross sections from hall D
- ▶ Total Photo-production cross sections from PDG [1]
- Wiser Photo-production cross section summed for all the processes [2]

Hall D Photo-Production Generator

- Hall D generator uses various experimental data to generate photo-production cross sections for photon energies below 3 GeV
- \blacktriangleright It uses modified version of PYTHIA to generate photo-production cross sections for photon energies above $3~{\rm GeV}$
 - ► I have not looked at PYTHIA generator in details yet.

Following $\gamma + p^+$ reactions are considered for photon energies below 3 GeV

1.
$$p^+ + \pi^0$$

2. $n + \pi^+$
3. $p^+ + \pi^+ + \pi^-(non - res.)$
4. $p^+ + \rho^0$
5. $\Delta^{++} + \pi^-$
6. $p^+ + \pi^0 + \pi^0$
7. $n + \pi^+ + \pi^0$
8. $p^+ + \eta^0$
9. $p^+ + \pi^+ + \pi^- + \pi^0$
4. $p^- + \pi^+ + \pi^- + \pi^-$

Compare Hall D vs. PDG

- Compared total cross sections from Hall D event generator and PDG photo-production cross sections on proton
- \blacktriangleright For γ momentum less than $3~{\rm GeV}$ it uses combination of different models including SAID
- \blacktriangleright For γ momentum greater than $3~{\rm GeV}$ it uses <code>PYTHIA</code>

Photo-Production Total Cross Section Comparison

Figure: Black line : Hall D genertor, Red points : PDG

From Photo-Production to Electro-Production

- Electro-Production can takes place either from real bremsstrahlung photon radiated in the target or from virtual photon interaction approximated by Equivalent Photon Radiator (EPA) approximation
- Wiser generator estimate these two components to compute the electro-production cross-section
 - Bremsstrahlung contribution approximated according to MO and TSAI [3]
 - Virtual contribution approximated using the reference [4]
- ▶ I have implemented electro-production part to the hall D event generator
 - Bremsstrahlung contribution is implemented using equations available at PDG-2012 [5] and [6]
 - ▶ EPA contribution is implemented according to the reference [7]
- Next few slide will summarize the electro-production implementation

Electro-Production with Equivalent Photon Approximation

Figure: Electro-Production (a) and Photo-Absorption (b) equivalency [7]

The electro-production cross section for electron energy E using Equivalent Photon Approximation (EPA),

$$d\sigma = \sigma_{\gamma}(\omega) \cdot dn(\omega)$$

$$dn(\omega) = \int_{q_{min}^{2}}^{q_{max}^{2}} dn(\omega, q^{2}) \qquad \qquad = N_{EPA}(\omega) \frac{d\omega}{\omega}$$

where $\sigma_{\gamma}(\omega)$ is photo-production cross section at photon energy ω and, $N_{EPA}(\omega) = \frac{\alpha}{\pi} \left[\left(1 - \frac{\omega}{E} + \frac{\omega^2}{E^2} \right) ln \frac{q_{max}^2}{q_{min}^2} - \left(1 - \frac{\omega}{2E} \right)^2 ln \frac{(\omega^2 + q_{max}^2)}{(\omega^2 + q_{min}^2)} - \frac{m_s^2 \omega^2}{E^2 q_{min}^2} \left(1 - \frac{q_{max}^2}{q_{max}^2} \right) \right]$ Rakitha S. Beminiwattha SoLID Collaboration Meeting September 11th, 2015 7.

7/16

Electro-Production with Radiated Real Photons

The Bremsstrahlung cross section for electron of energy E traveling inside a material [5]

$$\frac{d\sigma}{d\omega} = \frac{A}{X_0 N_A \omega} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2}\right)$$

The electro-production cross section due to Bremsstrahlung photons,

$$d\sigma = \sigma_{\gamma}(\omega) \cdot N_{BREMS}(\omega) \frac{d\omega}{\omega}$$
 $N_{BREMS}(\omega) = \frac{d}{X_0} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2}\right)$

Where X_0 is the radiation length and $d = \rho \cdot t$ where ρ is target density and t is target thickness

EPA Photon Spectrum

Figure: Photon Spectrum $N_{EPA}(\omega)$

Bremsstrahlung Photon Spectrum

Figure: Photon Spectrum $N_{BREMS}(\omega)$

Complete Photon Spectrum

Figure: Photon Spectrum $N_{EPA}(\omega) + N_{BREMS}(\omega)$ for electron incident on a proton target

Electro-Production with Hall-D Generator

- Photon energy is sampled using electro-production cross section weighted distribution
- \blacktriangleright 11 GeV electron beam (50 $\mu A)$ is incident into a 40 cm hydrogen target

Figure: Hall D generator now samples the photon energy using electro-production cross section weighted distribution

Electro-Production : π^0

Electro-Production π^0 Kinematics from Hall D Generator

Figure: π^0 Only for $\theta < 90^0$ and P < 2 GeV. Total cross-section is $\sim 30~\mu b$ for this limited kinematic phase-space

Initial Results

Pion Background from Different Methods

Figure: Using EPC code (see Michael Paolone's May 2015 collaboration meeting talk). Total cross section is $\sim 14~\mu \rm b$

Initial Results

Pion Background from Different Methods

Figure: Using Std. Wiser Generator (see Michael Paolone's May 2015 collaboration meeting talk). Total cross section is $\sim 80 \mu b$

Summary

- ► Hall D generator is now configured with electro-production from proton target
- Needs to tweak $\frac{q_{max}^2}{q_{min}^2}$ better : Paul working on this
- Initial result match with the EPC code
- Cross section to a factor of 2 but not sure EPC results have real photon contribution
- Next immediate step : folding SoLID acceptance into these distribution and do a rate estimation
- Next long term step : implement a proper Geant4 generator based on the hall D generator

Electro-Production : π^0

Electro-Production $\,\pi^0$ Kinematics from Hall D Generator

Electro-Production : π^-

Electro-Production π^{-} Kinematics from Hall D Generator

Electro-Production : π^+

Electro-Production π⁺ Kinematics from Hall D Generator

Initial Results

Electro-Production : π^0

Electro-Production nº Momentum from Hall D Generator

Initial Results

Electro-Production : π^-

Electro-Production # Momentum from Hall D Generator

Electro-Production : π^+

Electro-Production n⁺ Momentum from Hall D Generator

Compare Hall D vs. PDG

Compared total cross sections from Hall D low energy event generator and PDG photo-production cross sections on proton for γ momentum less than $3~{\rm GeV}$

Gamma-p Cross Section Comparison

Wiser Photo-Production Cross Section

- Wiser cross section, $\sigma_i(E_{\gamma})$ is computed for all the processes : π^{\pm} , K^{\pm} , P^+ and \bar{P}^-
- \blacktriangleright The cross section for π^0 is the average of π^\pm cross sections
- Then all the cross sections are summed to compute the total wiser cross section
- See slide 27 for steps

Wiser Photo-Production Cross Section

Wiser Photo-Production Cross Section

Figure: Wiser cross section only for 10 deg. to 90 deg.

Wiser Code Steps

- ► The main FORTRAN routine returns the differential cross section per monochromatic photon beam : $E' \frac{d^3\sigma}{dp'^3} / E_{\gamma}$
- Where (E', p') is the hadron momentum and E_{γ} is the incident photon energy
- \blacktriangleright The total cross section for a monochromatic photon beam for $i^{\rm th}$ type interaction,

$$\sigma_{i}(E_{\gamma}) = \int_{phase-space} \frac{d\sigma_{i}(E_{\gamma})}{dp'd\Omega} dp'd\Omega$$

• Where
$$\frac{d\sigma_i(E_{\gamma})}{dp'd\Omega} = \frac{p'^2}{E'} \cdot \left(E' \frac{d^3\sigma}{dp'^3} / E_{\gamma}\right) \cdot E_{\gamma}$$

- And subscript i is,
- **1**. $i = 0, 1 : \pi^{\pm}$
- **2**. $i = 2, 3 : K^{\pm}$
- 3. ${\rm i}=4,5$: ${\it P}^+$ and ${\it \bar{P}}^-$

 $\pi^{\rm 0}$ cross section is the average of π^{\pm} cross sections

Chin.Phys., C38:090001, 2014.

S. Riodan, X. Zheng, Z. Zhao, and N. Ton.

Comparison between Wiser π^- rates calculation and data from transversity and PVDIS experiments.

Internal document, 2014.

🔋 L. W. MO and Y. S. TSAI.

Radiative corrections to elastic and inelastic ep and up scattering. *Rev. Mod. Phys.*, 41:205–235, Jan 1969.

Min-Shih Chen and Peter Zerwas.

Equivalent-particle approximations in electron and photon processes of higher-order qed.

Phys. Rev. D, 12:187-197, Jul 1975.

J. Beringer et al. Review of particle physics. *Phys. Rev. D*, 86:010001, 2012.

Pair production and bremsstrahlung of charged leptons. *Rev. Mod. Phys.*, 46:815–851, Oct 1974.

V.M. Budnev, I.F. Ginzburg, G.V. Meledin, and V.G. Serbo. The two-photon particle production mechanism. physical problems.

applications. equivalent photon approximation.

Physics Reports, 15(4):181 – 282, 1975.