Measurements of the EMC Effect Using PVDIS Update

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

with

John Arrington Argonne National Laboratory

> Rakitha Beminiwattha Syracuse University

September 11, 2015

- Motivation
- Proposed Experiment
- Anticipated Results and Systematics

- Went to PAC42 deferred
 - $\bullet\,$ Cited desire to run Hall C $^{48}\text{Ca}/^{40}\text{Ca}$ first
 - Concerns about beam time and radiation budget for site boundaries
- John Arrington has joined as spokesperson
- Working on updating proposal for resubmision
 - Need to consider strengthening (and clarifying) physics case
 - more detailed radiation calculations
 - ⁴⁸Ca target update with status

Modification Questions

- Possible new degrees of freedom must be considered for nucleon modification - can CSV effectively be induced in asymmetric nuclei?
- Are data such as those from NuTeV hinting at us that these effects are important?
- Is there a direct connection between nucleon and parton-level modification observables?

PVDIS

PVDIS proves new flavor combinations \rightarrow isovector properties

$$A_{\rm PV} \sim rac{\left|\left.\right\rangle^{\vec{r}} \left\|\right\rangle^{\vec{z}}}{\left|\left.\right\rangle^{\vec{r}} \left\|\right\rangle^{\vec{r}}} \sim 100 - 1000 \text{ ppm}$$

$$\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right], y = 1 - \frac{E'}{E}$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

Effective Weak Couplings

$$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19 \qquad C_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03 C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2\theta_W = 0.34 \qquad C_{2d} = \frac{1}{2} + 2\sin^2\theta_W = 0.03$$

PVDIS

PVDIS proves new flavor combinations \rightarrow isovector properties

$$A_{\rm PV} \sim rac{\left|\left|\left|\left|\left|\right|^{r}\right|^{2}\right|^{2}}{\left|\left|\left|\left|\left|\right|\right|^{r}\right|^{2}\right|^{2}} \sim 100 - 1000 \text{ ppm}$$

$$\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right], y = 1 - \frac{E'}{E}$$

Symmetric nucleus limit

Probing *isovector* quantity through parity violation:

$$a_1 \simeq rac{9}{5} - 4 \sin^2 heta_W - rac{12}{25} \left[rac{u_A^+ - d_A^+}{u_A^+ + d_A^+}
ight] + \dots$$

where $u_A = u$ in p and u in n

Nuclear Modification

- First observed in 1984 by EMC collaboration
- Showed reduced presence of partons in 0.3 < x < 0.7
- Generally greater effect as one pushes to higher *A*
- Not due to simple binding effects real modification of structure

General assumption of $u \leftrightarrow d$ for $p \leftrightarrow n$ PVDIS can test this

J. Gomez et *al., PRD49 4348 (1994)*

Isovector Dependence? - NuTeV

• Neutrino scattering (charged current and neutral current) is sensitive to different flavor combinations

- Asymmetric nuclei (iron) need corrections
- CSV or IVEMC (effective CSV) will change this result and are not well constrained by data

Modeling - CBT Model

- Cloet et *al.* make predictions based on mean field calculations which give reasonable reproductions of SFs
- Explicit isovector terms are included constrained by symmetry energy
- Few percent effect in a₂, larger at larger x

Cloet et al. PRL102 252301 (2009), Cloet et al. PRL109 182301 (2012)

Seamus Riordan — SoLID 9/2015 EMCPVDIS 8/17

Isovector Dependence? - SRC

- SRC show strong preference to n-p pairs over p-p pairs
- Show strong correlation to "plateau" parameter for x > 1 SFs
- Different high momentum tails for *n* and *p* in asymmetric nuclei could drive modification and IVEMC

Configuration

- Experimental configuration practically identical to approved SoLID PVDIS measurement
- Rates are better or comparable to existing LD₂ measurement

Target - ⁴⁸Ca

• 12% radiator - photons and photoproduced pions are main background concerns

- \bullet Learned that ^{48}Ca is not isotopically pure and has ${\sim}10\%$ ^{40}Ca and other contaminations needs to be put under consideration
- Probably only going to have single target already in position needs to be recast - holder needs to be redesigned

Projections

- Requesting 60 days at 80 μ A 11 GeV production (71 days total) to get \sim 1% stat uncertainties across a broad range of x
- In the context of the CBT model, this is few sigma in very simple interpolation model
- This provides new and useful constraints in a sector where there is little data

Systematics and Experimental uncertainties

- Polarimetry and pions are main contributions
- Radiative working group has been established for PVDIS
- Dominant errors:

Effect	Uncertainty [%]
Polarimetry	0.4
Q^2 -dependent effects	0.2
Pions (bin-to-bin)	0.1-0.5
Radiative Corrections (bin-to-bin)	0.5-0.1
e^- from pair production	0.5-0.0
Total for any given bin	~0.5-0.8

• Statistical uncertainty dominates

Radiation Summary

- Beam on target simulation using Remoll
 - Limited statistics about 20% uncertainty on neutrons
- No Polythene yet

Rakitha Beminiwattha

Radiation Power with No Poly

		Ca48	LD2	PREX_I	PREX_II
Туре	E range	Power	Power	Power	Power
	(MeV)	(W/uA)	(W/uA)	(W/uA)	(W/uA)
e±	E<10	0.11	0.11	0.17	0.01
	10 <e< td=""><td>0.18</td><td>0.16</td><td>1.29</td><td>0.06</td></e<>	0.18	0.16	1.29	0.06
Photons	E<10	0.02	0.02	0.75	0.08
	10 <e< td=""><td>0.04</td><td>0.04</td><td>2.03</td><td>0.11</td></e<>	0.04	0.04	2.03	0.11
Neutrons	E<10	0.0002	0.0003	0.0023	0.0003
	10 <e< td=""><td>0.0047</td><td>0.0098</td><td>0.0039</td><td>0.0012</td></e<>	0.0047	0.0098	0.0039	0.0012

		Ca48 @ 80 uA	LD2 @ 50 uA	PREX_I @ 70 uA	PREX_II @ 70 uA
Туре	E range	Power	Power	Power	Power
	(MeV)	(W)	(W)	(W)	(W)
e±	E<10	9.02	5.67	11.64	0.64
	10 <e< td=""><td>14.45</td><td>8.13</td><td>90.16</td><td>3.93</td></e<>	14.45	8.13	90.16	3.93
Photons	E<10	1.94	1.13	52.19	5.34
	10 <e< td=""><td>3.11</td><td>2.05</td><td>142.31</td><td>7.49</td></e<>	3.11	2.05	142.31	7.49
Neutrons	E<10	0.02	0.02	0.16	0.02
	10 <e< td=""><td>0.38</td><td>0.49</td><td>0.28</td><td>0.08</td></e<>	0.38	0.49	0.28	0.08

09/09/15

Rakitha Beminiwattha

Radiation Flux with No Poly

			Ca48	LD2	PREX_I	PREX_II
Π	уре	E range	Flux	Flux	Flux	Flux
Г		(MeV)	(Hz/uA)	(Hz/uA)	(Hz/uA)	(Hz/uA)
Г	e±	E<10	3.83E+11	4.08E+11	3.45E+11	2.05E+10
Γ		10 <e< td=""><td>3.84E+10</td><td>3.23E+10</td><td>2.10E+11</td><td>9.42E+09</td></e<>	3.84E+10	3.23E+10	2.10E+11	9.42E+09
Г						
Е	Photons	E<10	2.22E+11	2.83E+11	5.49E+12	6.41E+11
		10 <e< td=""><td>6.77E+09</td><td>6.70E+09</td><td>3.43E+11</td><td>1.93E+10</td></e<>	6.77E+09	6.70E+09	3.43E+11	1.93E+10
Γ						
Г	Neutrons	E<10	7.86E+08	1.44E+09	1.62E+10	1.79E+09
Г		10 <e< td=""><td>2.62E+08</td><td>3.31E+08</td><td>3.93E+08</td><td>1.34E+08</td></e<>	2.62E+08	3.31E+08	3.93E+08	1.34E+08

		Ca48 @ 80	LD2 @ 50	PREX_I	PREX_II @
		uA	uA	@ 70 uA	70 uA
Туре	E range	Flux	Flux	Flux	Flux
	(MeV)	(Hz)	(Hz)	(Hz)	(Hz)
e±	E<10	3.06E+13	2.04E+13	2.42E+13	1.44E+12
	10 <e< td=""><td>3.07E+12</td><td>1.62E+12</td><td>1.47E+13</td><td>6.59E+11</td></e<>	3.07E+12	1.62E+12	1.47E+13	6.59E+11
Photons	E<10	1.78E+13	1.41E+13	3.85E+14	4.49E+13
	10 <e< td=""><td>5.41E+11</td><td>3.35E+11</td><td>2.40E+13</td><td>1.35E+12</td></e<>	5.41E+11	3.35E+11	2.40E+13	1.35E+12
Neutrons	E<10	6.29E+10	7.21E+10	1.13E+12	1.25E+11
	10 <e< td=""><td>2.10E+10</td><td>1.65E+10</td><td>2.75E+10</td><td>9.39E+09</td></e<>	2.10E+10	1.65E+10	2.75E+10	9.39E+09

09/09/15

Rakitha Beminiwattha

- Nuclear modification has many open important questions for our understanding of QCD and can be tested with SoLID PVDIS
- Working on improving proposal to address PAC concerns
- Updates need to be made on target and radiation estimates

BACKUP

Quark Parton Model

$$\begin{split} R^{\gamma(\gamma Z)} &\equiv \frac{\sigma_L^{\gamma(\gamma Z)}}{\sigma_T^{\gamma(\gamma Z)}} = r^2 \frac{F_2^{\gamma(\gamma Z)}}{F_1^{\gamma(\gamma Z)}} - 1 \\ r^2 &= 1 + \frac{Q^2}{\nu} = 1 + \frac{4M^2 x^2}{Q^2} \\ A_{\rm PV} &= -\left(\frac{G_F Q^2}{4\sqrt{2}\pi\alpha}\right) \left[g_A^e Y_1 \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + \frac{g_V^e}{2} Y_3 \frac{F_3^{\gamma Z}}{F_1^{\gamma}}\right] \\ Y_1 &= \frac{1 + (1 - y)^2 - y^2 \left(1 - r^2 / (1 + R^{\gamma Z})\right) - 2xyM/E}{1 + (1 - y)^2 - y^2 \left(1 - r^2 / (1 + R^{\gamma})\right) - 2xyM/E} \left(\frac{1 + R^{\gamma Z}}{1 + R^{\gamma}}\right) \\ Y_3 &= \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 \left(1 - r^2 / (1 + R^{\gamma})\right) - 2xyM/E} \left(\frac{r^2}{1 + R^{\gamma}}\right) \\ F_1^{\gamma} &= \frac{1}{2} \sum_i e_i^2 (q_i(x) + \bar{q}_i(x)); F_2^{\gamma} = 2xF_1^{\gamma}, \\ F_1^{\gamma Z} &= \sum_i e_i g_V^i (q_i(x) + \bar{q}_i(x)); F_2^{\gamma Z} = 2xF_1^{\gamma Z}, \\ F_3^{\gamma Z} &= 2 \sum_i e_i g_A^i (q_i(x) - \bar{q}_i(x)). \end{split}$$

Possible future extensions

Experiment	Constraint	Reason
LD_2	CSV, Q^2 dependence	
LH_2	d/u	
⁴⁸ Ca	Isovector EMC properties	
⁴⁰ Ca	$R^{\gamma Z}$, CSV dependence on A	Effects are very large or
		in serious disagreement
		with NuTeV or other data
Co, Cu?	Less direct test on NuTeV	Effects are very large or
		in serious disagreement
		with NuTeV or other data
⁵⁶ Fe	Direct test of NuTeV	Seperate data point
²⁰⁸ Pb	Very high Z	Seperate data point

Approved This Proposal Can't with SoLID

Modeling - nPDFs

- \bullet Varying weights in fits between lepton/Drell Yan and ν can show tension between data sets
- nCTEQ fits show dramatic differences in a similar vein at CBT
- Few percent effect in asymmetry

- w relative weighting of ν data with lepton/DY
- Suggests softness in this channel through lepton/DY
- PVDIS can provide differentiation

• Nuclear dependence of $R^{\gamma Z}$ data doesn't exist

Drell-Yan

GEM plane	LD ₂ background	⁴⁸ Ca EM background	⁴⁸ Ca EM background (no baffles)
	$(kHz/mm^2/\mu A)$	$(\mathrm{kHz}/\mathrm{mm^2}/\mu\mathrm{A})$	$(kHz/mm^2/\mu A)$
1	6.8	4.8	49.4
2	3.0	2.1	32.3
3	1.1	0.8	9.9
4	0.7	0.5	6.4

Momentum	π^{-}	π^+	$\pi^0(\gamma)$	Proton	EM $(\gamma, e\pm)$
range (GeV)	(MHz)	(MHz)	(MHz)	(MHz)	(GHz)
$\rm p>0.0~GeV$	618	283	70123	483	844
$\rm p>0.3~GeV$	439	153	438	417	n/a
$\rm p>1.0~GeV$	123	18	37	51	0.0
$\rm p>3.0~GeV$	2	0.01	0.04	0.004	0.0

ECal Trigger Rates

region	full	high	low		
	rate entering	g the EC (kH	z)		
e ⁻	240	129	111		
π^{-}	$5.9 imes10^5$	$3.0 imes10^5$	$3.0 imes10^5$		
π^+	$2.7 imes 10^5$	$1.5 imes10^5$	$1.2 imes10^5$		
$\gamma(\pi^0)$	$7.0 imes 10^7$	$3.5 imes10^7$	$3.5 imes10^7$		
p^+	$4.8 imes10^5$	$2.1 imes10^5$	$2.7 imes10^5$		
sum	$7.1 imes 10^7$	$3.6 imes10^7$	$3.6 imes10^7$		
	Rate for $p < 1$ GeV (kHz)				
sum	$8.4 imes10^8$	$4.2 imes 10^8$	4.2×10^{7}		
tr	igger rate for	p>1 GeV ((kHz)		
e ⁻	152	82	70		
π^{-}	$4.0 imes 10^{3}$	$2.2 imes10^3$	$1.8 imes10^3$		
π^+	$0.2 imes 10^3$	$0.1 imes10^3$	$0.1 imes10^3$		
$\gamma(\pi^0)$	3	3	0		
р	$1.6 imes10^3$	$0.9 imes10^3$	$0.7 imes10^3$		
sum	$5.9 imes10^3$	$3.3 imes10^3$	$2.6 imes10^3$		
trigger rate for $p < 1$ GeV (kHz)					
sum	$2.8 imes 10^3$	$1.4 imes 10^3$	$1.4 imes 10^3$		
	Total trigger rate (kHz)				
total	$8.7 imes 10^3$	$4.7 imes10^3$	$4.0 imes10^3$		

Cerenkov Trigger Rates

	Total Rate for $p > 0.0 \text{ GeV}$	Rate for $p > 3.0 \text{ GeV}$
	(kHz)	(kHz)
DIS	240	73
π^{-}	$5.9 imes 10^5$	$1.6 imes 10^3$
π^+	2.7×10^5	40
$\gamma(\pi^0)$	$7.0 imes 10^7$	40
р	4.8×10^5	4
Sum	$7.1 imes 10^7$	1.7×10^3
	Trigger Rate from Che	erenkov (kHz)
	Trigger Rate for $p > 1.0 \text{ GeV}$	Trigger Rate for $p > 3.0 \text{ GeV}$
	(kHz)	(kHz)
DIS	223	66
π^{-}	193	49
π^+	22	1.6
$\gamma(\pi^0)$	0	0
р	0	0
Sum	438	116

		Incident Radiation Power		
Radiation	E-Range	⁴⁸ Ca	LD_2	
Туре	(MeV)	$(W/\mu A)$	$(W/\mu A)$	
e±	E < 10	0.13	0.13	
	E > 10	0.19	0.17	
n	E < 10	0.0001	0.0006	
	E > 10	0.02	0.04	
γ	E < 10	0.02	0.02	
	E > 10	0.04	0.05	

Rates and Backgrounds

- Trigger defined by coincidence between Cherenkov and shower
 150 kHz total anticipated with background (well below SoLID spec)
- Pion contamination no worse than 4% in any given bin (worst at high x)
- GEM rates comparable to or smaller than design for LD₂

Particle	DAQ Coin. Trig.Rate (kHz)		
	P > 1 GeV	P > 3 GeV	
DIS e ⁻	144	61	
π^{-}	11	7	
π^+	0.4	0.2	
Total	155	68	

Systematics

- Many potential nuclear effects come into play as this sector is not presently well constrained
- Requires measurements from LD₂ and LH₂ for information on size of nuclear effects
- Free PDFs will be constrained by LH₂ et al

Projected 12 GeV d/u Extractions

Systematics

- Many potential nuclear effects come into play as this sector is not presently well constrained
- Requires measurements from LD₂ and LH₂ for information on size of nuclear effects
- Higher twist effects will also be constrained by LD₂ using same kinematics, but also 6.6 GeV beam

Approved LD_2 (120 days):