SoLID GEM Detectors in US

Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ Jlab, 01/13/2016

Outline

- ✓ Overview of SoLID GEM Trackers
- ✓ Large area GEM R&D @ UVa
- ✓ Update on APV25 Electronics
- ✓ SoLID GEM-US Pre-R&D

Overview of SoLID GEM Trackers

Tracking requirements for PVDIS

- Luminosity ~ 10³⁹/cm²/s
- Rate: from 100 kHz/cm² to 600 kHz/cm² (with baffles) from GEANT4 estimation
- Spatial Resolution: ~ 100 μm (σ) in azimuthal direction
- Total area: ~37 m2 total area (30 sectors × 5 planes, each sector covering 12 degree)
- Need radiation and magnetic field tolerant

Idea

- Use the same set of GEM modules for all 3 configurations (PVDIS, SIDIS and J/ψ)
- All electronics channels from PVDIS would be more than enough for SIDIS and J/ψ

Overview of SoLID GEM Trackers: Large area GEM challenges

- SoLID needs GEM modules as large as 113 cm × 44 cm for the larger disk of PVDIS
- The biggest challenge used to be the non-availability of large area GEM foils.
 - Previously limited by double mask technique for etching: hard to the two masks accurately:
 Max area was limited to ~ 45 cm × 45 cm
 - ✓ New Single Mask technique allows to make GEM foils as large as 200 cm × 55 cm
- The remaining challenge is large production capacity:
 - ✓ If all LHC related large GEM project (CMS, ALICE, TOTEM) gets underway, this will require almost 100 % of CERN production capacity
 - ✓ Currently work going on for large GEM production capabilities in China and in the US.

Large Area GEM R&D @ UVa: The PRad GEM Trackers

PRad triple-GEM detector (active area: 122 cm × 55 cm)

Characteristics of PRad GEM trackers

- ✓ 2 large triple-GEM chambers (~ 122 cm × 55 cm)
- ✓ Largest GEM ever built, bigger than the largest SoLID GEM module
- ✓ COMPASS style 2D Cartesian strip readout : long narrow strip (> 130 cm) → but still low capacitance noise

Characterization with Cosmics

Large Area GEM R&D @ UVa: Performances of U-V strip readout

EIC-FT-GEM (SoLID) Prototype I

- Trapezoid shape 1-m long triple-GEM (3-2-2-2): widths at the inner radius and outer radius equal to 23 cm and 44 cm respectively.
- Readout board: flexible 2D U-V strip readouts (COMPASS style) with a pitch of 550 µm, top layer (140 µm, wide U-strips) run parallel to one radial side of the detector and bottom layer (490 µm, V-strips) run parallel to the other side.
- Test beam results published in <u>NIM A 808 (2016) 83-92</u>

Strip position (mm)

1/13/2016

-200 -150 -100 -50 0 50 100 150 200 Strip position (mm)

SoLID Collaboration Meetin

U-V strip Readout of EIC-SoLID GEM Proto I

Large Area GEM R&D @ UVa: EIC-FT-GEM Prototype II

Common GEM foil for EIC-FT-GEM proto II (design by A. Zhang @ Florida Tech)

Common GEM foil for EIC Forward Tracker R&D:

- ✓ Common GEM foil design developed by three groups at UVa, Florida Tech (M. Hohlmann), and Temple University (B. Surrow).
- Active area: A trapezoid foil with a length of 903.57 mm, widths at both ends equal to 43 mm and 529 mm and an opening angle of 30.1°.
- ✓ Opening angle of the trapezoid is **30.1 deg**., allows some overlap when making a disk from 12 detectors.
- ✓ All HV sectors connections and gas flow structure are made on the large radius end.
- ✓ Honeycomb support are removed for a low mass detector
- ✓ Share a lot of features with SoLID Trackers GEMs

Novel assembly method for light weight GEM for EIC/SoLID

New assembly method:

- ✓ Ongoing work on the design of proto II of Forward Tracker Detector R&D of EIC
- ✓ Similar assembly technique for the pRad GEM chambers
- Foils are glued to frames but frames not glued together but sealed with O-rings and bolts
- ✓ could be re-opened.

Large Area GEM R&D @ UVa: EIC-FT-GEM Prototype II

Upgrade of the U-V strip 2D readout board

- ✓ The readout strip pitch is equal to 400 μm to improve spatial resolution, reduce pedestal noise and strip occupancy
- ✓ but **cluster size will increase** → however provide an easier way to separate photon background from MIPs
- ✓ Larger U-V strip stereo-angle of **30.1**° provide significant improvement of the spatial resolution in the radial direction
- Electrical contacts between the strips and the FE electronics done with zebra connectors on the outer radius side of the detector.
- ✓ With zebra connectors, no mounted connectors and metallized holes (vias) on the readout board
 - Lower production cost and eliminated risk associated with vias short and connector soldering on flexible readout foil

Zebra-Panasonic adapter board

- ✓ Needed to read out the chamber with he existing APV25-SRS Front End Cards, design almost ongoing
- ✓ In the final version, for EIC/SoLID GEM trackers, the zebra strips will be directly on the FE cards

Design of EIC-Proto II 2D U-V strips readout board

7

Drawings of the Zebra-Panasonic adapter board

Low-Mass GEM R&D: Chromium GEM foil (Cr-GEM)

Standard GEM

Triple-GEM with standard GEM foil

Triple-GEM with Cr-GEM foil

	Quantity	Thick ness	Density	X0	Area	Х0	S-Density		Quantity 1	Thick ness	Density	Х0	Area	X0	S-Density
		μm	g/cm3	mm	Fraction	96	g/cm2			μm	g/cm3	mm	Fraction	96	g/cm2
Window								Window							
Kapton	2	25	1.42	286	1	0.0175	0.0071	Kapton	2	25	1.42	286	1	0.0175	0.0071
Drift								Drift							
Copper	1	5	8.96	14.3	1	0.0350	0.0045	Copper	1	0	8.96	14.3	1	0.0000	0.0000
Kapton	1	50	1.42	286	1	0.0175	0.0071	Kapton	1	50	1.42	286	1	0.0175	0.0071
GEM Foil								GEM Foil							
Copper	6	5	8.96	14.3	0.8	0.1678	0.0215	Copper	6	0	8.96	14.3	0.8	0.0000	0.0000
Kapton	3	50	1.42	286	0.8	0.0420	0.0170	Kapton	3	50	1.42	286	0.8	0.0420	0.0170
Grid Space	r							Grid Space	r						
G10	3	2000	1.7	194	0.008	0.0247	0.0082	G10	3	2000	1.7	194	0.008	0.0247	0.0082
Readout								Readout							
Copper-80	1	5	8.96	14.3	0.2	0.0070	0.0009	Copper-80	1	0	8.96	14.3	0.2	0.0000	0.0000
Copper-350	1	5	8.96	14.3	0.75	0.0262	0.0034	Copper-350	1	0	8.96	14.3	0.75	0.0000	0.0000
Kapton	1	50	1.42	286	0.2	0.0035	0.0014	Kapton	1	50	1.42	286	0.2	0.0035	0.0014
Kapton	1	50	1.42	286	1	0.0175	0.0071	Kapton	1	50	1.42	286	1	0.0175	0.0071
NoFlu glue	1	60	1.5	200	1	0.0300	0.0090	NoFlu glue	1	60	1.5	200	1	0.0300	0.0090
Gas								Gas							
(CO2)	1	15000	1.84E-03	18310	1	0.0819	0.0028	(CO2)	1	15000	1.84E-03	18310	1	0.0819	0.0028
					Total	0.471	0.090						Total	0.235	0.060

About 50% reduction in the amount of material in a EIC-FT-GEM with Cr-GEM

Response uniformity

CopperLessGEM: Hit Position Map

ADC Spectrum with Fe55

Cr-GEM foil:

- Copper (Cu) clad raw material comes with 100 nm Chromium (Cr) layer between Cu and Kapton, 5μm Cu layers removed, leave only 100 nm residual Cr layers as electrodes, Cr-GEM foils provided CERN PCB workshop
- ✓ Using Cr-GEM foil lead to almost 50% reduction of the material of an SoLID-like light weight triple-GEM detector: this is because the material in a lightweight triple-GEM is dominated by the GEM foils & readout board

1/13/2016

Update on APV-25 Electronics: MPD electronics for SBS

Multi Purposed Digitizer (MPD) is a VME64x module

- MPD data transferred may either on the VME bus or via optical fiber
- INFN & JLab currently working on the implementation of the communication between MPD and SSP over optical fiber
- First tested prototype expected by end of Nov/2015
- DAQ: Porting of MPD acquisition code to CODA framework close to be completed

- Integration into CODA DAQ (in good progress, test currently ongoing)
- Test of the full MPD + CODA DAQ with SBS chamber in coming weeks

Update on APV-25 Electronics: SRS electronics for PRad

The Scalable Readout System (SRS)

- APV25-based system developed by the international RD51 Coll. based @ CERN
- Front End cards on the chamber host the APV25 chip ⇒ data to ADC via HDMI cables
- ADC cards interfaced with the FPGA board (FEC card) ⇒ FEC data fragment to the SRU
- SRU send the data fragment from many FECs to the DAQ PC through Gb Ethernet

The Need for PRad GEMs readout:

- Peak trigger rate 5 kHz
- 72 APV25-FE cards (9216 channels), 6 (8*) ADC/FECs
 ⇒ 2 SRU boards
- Implementation of the 10 Gb Optical link for the SRU (done)
- Integration of SRS into CODA DAQ (in good progress, test currently ongoing)

GEM in Experiment at JLab in 2016

- The PRad in Hall B: (April May 2016)
 - ✓ Two PRad GEMs 120 cm × 55 cm provide 100 µm position accuracy
 - ✓ Readout electronics: APV25 + SRS
- Tritium Experiment in Hall A (Fall 2016)
 - ✓ 4 Experiments with Tritium target with Bigbite Spectrometer @ 11 GeV
 - ✓ Two chambers (150 cm × 60 cm) made of 3 SBS GEM modules each
 - ✓ Readout electronic: APV25 + MPD

SoLID GEM-US Pre-R&D program: Plan for the next 2 years

First year 2016:

• Study of the performance of GEM in high background rate environment

- ✓ Data with x-ray source combine with cosmic (and/ or ⁹⁰Sr) to provide the input on the GEM efficiency in high rate environment needed for the evaluation of the tracking efficiency by the tracking reconstruction software group
- Optimization of the design of different GEM modules size needed to equipped all layers in all PVDIS / SIDIS / J/ψ configuration

• Acquire a few Chinese GEM foils for test and characterization

- ✓ Electrical test, Performance comparison with standard CERN foils
- Readout electronics for SoLID GEMs
 - ✓ Identify the need for SoLID GEM tracking and specification for the ideal chip
 - ✓ Survey of the candidate chips available on the market other than APV25, DREAM and VMM

Second year 2017:

- SoLID GEM chambers design & prototyping
 - ✓ Assembly of a prototype for the most challenging geometry (can even use Chinese GEM foils)
 - ✓ Applied experience learned from the EIC-FT-GEM R&D prototype II
- Readout electronics for SoLID GEMs
 - ✓ Acquire a few VMM electronics from RD51 for tests with the SRS DAQ

SoLID GEM-US Pre-R&D program: High rate studies for SBS

X-ray box setup @ UVa:

- Photon energy range: up to 50 keV
- Angular distribution: uniform within 60°
- Output flux: 24 MHz/cm² on the surface of GEM for 20 keV/ and current 5 µA

Charge deposition in GEM:

- Conversion rate about 0.5% to electrons for ionization
- up to 3.4*10¹¹ electrons/cm²/s equivalent to about 7 MHz / cm² MIP.

0.22 MHz / cm² mips

3169725

6.28

169.4

Entries

Maar

RMS

143 strips

143.1

26.16

Mea

0.44 MHz / cm² mips

120(

1000 800

400

Hit distribution

SoLID GEM-US Pre-R&D program: High rate studies for SBS

These data produced for this study could be used as input for the tracking efficiency for SoLID

SoLID GEM-US Pre-R&D program: BNL VMM chip

SoLID GEM-US Pre-R&D program: BNL VMM chip

- VMM3 expected to be release this year (2016)
- Will be very close to the final version
- Upgrade and bug fix of VMM2
- We plan to acquire a few chips to start test with our current SRS setup

BROOKHAVEN George lakovidis - RD51 Collaboration meeting

VMM SEU & L1H circuits

BGA package

VMM2 tests

VMM3 desian

PCB (AZ)

Channel and control logic

Register, control and reset

Slow interface

VMM2 design / fabrication complete

ADC or peak detector input node

complete

complete

in progress

in progress

in progress

queued

queued

queued

being discussed

Simultaneous high-resolution and

Direct input for ADC characterization

direct-output operation SEU-tolerant logic

Configuration

19/03/2015

SoLID GEM R&D activities requiring funding at UVa and TU

- Small investments in pre R&D pay big dividends at final R&D and production.
- While a significant progress towards SoLID GEMs accomplished within the EIC R&D program some SoLID specific funding needed.
- Following is a rough estimate for the first year of SoLID GEM pre-R&D
 - UVa \$ 20 k :
 - Components and manpower for a Solid prototype design.
 - TU \$ 20 k:
 - Design and fabrication costs for SoLID specific GEM foils and chamber components.
 - UVa/TU \$ 40 k:
 - Funds to host Chinese collaborators for extended visits.
 - Purchase single mask foils from CIAE and build and characterize prototypes.

Summary / Outlook

Large GEM activities in US (UVa & Temple U)

- Production of Large Area GEM trackers for the SBS in Hall A and PRad in Hall B
- Ongoing intensive GEM R&D for the EIC forward tracking
- Multi-Institute collaboration for development of MPGD technologies
- Effort to promote domestic production of GEM with Tech Etch (B. Surrow, Temple U)
- Progress in the integration of the APV-25 readout electronics into Jlab CODA DAQ
 - Both APV-SRS and APV-MPD Electronics will be used in beam at JLab in 2016

SoLID GEM-US program for a two years pre-R&D

- Finalize the design of SoLID GEM modules for all configuration
- Setup a program to start testing and characterization of Chinese GEM foils
- Construction of full size prototypes of the
- Investigate needs and option for SoLID GEM readout electronics
- Study the currently available candidate such as BNL VMM or Saclay DREAM chip

Back Up

Overview of SoLID GEM Trackers: PVDIS Configuration

- Instrument five locations with GEMs:
- 30 GEM modules at each location: each module with a 12-degree angular width.

Location	Z (cm)	R_{min} (cm)	R_{max} (cm)	Surface (m ²)	# chan
1	157.5	51	118	3.6	24 k
2	185.5	62	136	4.6	30 k
3	190	65	140	4.8	36 k
4	306	111	221	11.5	35 k
5	315	115	228	12.2	38 k
Total				≈ 36.6	$\approx 164 \text{ k}$

Largest GEM module size required: 113 cm x (21-44) cm

With ~5% spares, we will need about 170 k readout channels.

Large number of readout channels; but cost of electronics going down – cost per channel for the RD51 SRS APV-25 based readout is ~ \$3.00 + R&D expenses to optimize electronics for SoLID needs.

1/13/2016

Overview of SoLID GEM Trackers: SIDIS Configuration

- Six locations instrumented with GEM trackers:
- PVDIS GEMs can be re-arranged to make all layers for SIDIS by moving the modules closer to the axis so that they are overlapping with each other

Plane	Z (cm)	R _I (cm)	R _O (cm)	Active area (m²)	# of channels	
1	-175	36	87	2.0	24 k	20
2	-150	21	98	2.9	30 k	0 27
3	-119	25	112	3.7	33 k	
4	-68	32	135	5.4	28 k	
റ	5	42	100	2.6	20 k	-150 -100 -50 0 50 100 150 y SIDIS
6	92	55	123	3.8	26 k	
total:				~20.4	~ 161 k	

- The idea of using the same modules for different configurations need to be evaluated
- Might not necessarily be optimal in term of cost production and best design for the experiment

Temple University GEM R&D program

Slides provided by Bernd Surrow

• Major effort on STAR Forward GEM Tracker completed with full installation in fall 2012 - 24 large

triple-GEM detectors arranged on disks / 30720 channels (APV25-S1)

• Large group at TU with fully equipped micro-pattern detector laboratory (Detector lab and

permanent clear room facility) at new Science Education and Research Center with outstanding

resources

 Major funded EIC R&D effort on large triple-GEM detectors focusing on light-weight structures and commercial fabrication of various detector components