Generalized Parton Distributions programs at SoLID

SoLID meeting, Jefferson Lab., Jan. 12, 2016.

M. Boër*, A. Camsonne, K. Gnanvo, P. Nadel-Turonski, E. Voutier, Z. Ye, J. Zhang, Z. Zhao...

*speaker

<u>OUTLINE</u>

- GPD physics
 - reactions
 - fits of Compton Form Factors
- GPD projects for SoLID
 - DVCS
 - TCS
 - DDVCS
- Technical requirements for these programs

Generalized Parton Distributions of the nucleon

Goal: A 2+1 dimensional picture of the nucleon

GPD contain the correlation between transverse distribution of partons in nucleon and their longitudinal momenta \rightarrow momentum dependent transverse distributions in position, spin...

How could SoLID be involved in the measurement of the GPD ?

Exclusive Deeply Virtual Compton processes

x : longitudinal momentum fraction of the struck quark

 ξ : longitudinal momentum transfer t : momentum transfer squared

 Q^2 = -q² ; Q'^2 = +q² : hard scale

Different exclusive processes involving photons, <u>same GPDs</u>:

- outgoing photon is real: DVCS (spacelike) Deeply Virtual Compton Scattering: $e N \rightarrow e' \gamma N'$

- incoming photon is real: TCS Timelike Compton Scattering: $\gamma N \rightarrow l^+l^- N'$

- both photons are virtual: DDVCS Double Deeply Virtual Compton Scattering: $e N \rightarrow e' l^+l^- N'$

(l stands for any lepton, beam could also be another lepton)

Access 4 chiral even nucleon's quark GPD (scattering off a nucleon): H, E, H, E
 → unpolarized and polarized distributions of quarks u and d in the nucleon
 → flavor separation by comparison of proton and neutron GPD
 H^p = 4/9 H^u + 1/9 H^d Hⁿ = 1/9 H^u + 4/9 H^d

Compton processes + Bethe-Heitler

Other processes: Deeply Virtual Meson Production

Selection of different combinations of GPD depending on meson spin-parity and flavor content

- \rightarrow flavor separation, gluons
- \rightarrow easier access to some GPDs compared to virtual Compton processes

- <u>but</u> additional non perturbative part, interpretation (scaling...), need phenomenological models to fit data...

*only Compton processes in the following of this talk Exclusive pion production at SoLID: talk GM Huber, SoLID meeting May 2015

Extraction of GPDs and Compton Form Factors

Phase Space for these reactions (11 GeV electron)

[no acceptance considerations]

<u>DVCS</u>: already measured at 6 GeV, extension of the phase space

<u>TCS</u>: out of vector mesons resonance region \rightarrow only at high Q^{'2}, need high luminosity

<u>Common region</u>: maybe used for comparison of measured Compton Form Factors and for combined CFFs fits of DVCS+TCS (same CFF at first order)

DDVCS: very narrow phase space (not all the cuts are represented)

 \rightarrow only at high Q¹² (like TCS)

 $\rightarrow\,$ need very high luminosity due to the multiple kinematical cuts and both high Q² and Q'²

Complementarity on fits: what could we achieve with DVCS + TCS?

exercise with simulation: doesn't represent any realistic case / just comparative (relative statistics...) [in progress] DVCS: observables already measured at JLab@6 GeV, TCS: proposed measurements

Complementarity: DVCS+TCS observables for fits, assuming same CFF for DVCS and TCS (LO/twist)
 Comparison of GPD H with DVCS or TCS (high precision required): check universality => for SoLID.

- Equivalent results with transversally polarized target DVCS... this example is not exclusive

Comparison: fits of proton and neutron CFF with DVCS and TCS

exercise with simulation: doesn't represent any realistic case / just comparative (relative statistics...) [in progress] DVCS: observables already measured at JLab@6 GeV, TCS: proposed measurements

- both proton and neutron are needed to separate u and d quark GPD
- similar results for DVCS p compared to n and TCS p compared to n
- Re(H) poorly constrained with neutron compared to proton
- "n" more sensitive to GPD E than "p", "p" more sensitive to GPD H compared to "n".

$e P \rightarrow e' \gamma P$ DVCS @ SoLID

Goal: measurement of DVCS off (polarized) proton or neutron with polarized e⁻

- → measurement of all combinations of beam and/or target spin asymmetries, polarized cross-sections
- → other experiment in Hall A, B, C have already published results or accepted proposals, no DVCS@SoLID yet
- → transversally polarized neutron would be new if proposed for SoLID => GPD E, spin...
- → high luminosity and large acceptance of SoLID are a plus for this purpose / systematics are to be studied
- → work in progress (Z. Ye...):

need background simulations, clarify what are the resolutions especially for the neutron detection, studies on what are the needs for the experimental setup: recoil detector?... manpower welcome!

Polarization	Asymmetries	CFFs
Longitudinal Beam	A _{LU}	$\begin{split} ℑ\{\mathcal{H}_{p},\tilde{\mathcal{H}}_{p},\mathcal{E}_{p}\}\\ ℑ\{\mathcal{H}_{n},\tilde{\mathcal{H}}_{p},\mathcal{E}_{n}\} \end{split}$
Longitudinal Target	A _{UL}	$\begin{split} ℑ\{\mathcal{H}_{p},\mathcal{H}_{p}\}\\ ℑ\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\} \end{split}$
Long. Beam + Long. Target	A _{LL}	$\mathcal{R}e\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\}\ \mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\}$
Transverse Target	A _{UT}	$Im\{\mathcal{H}_{p}, \mathcal{E}_{p}\}$ $Im\{\mathcal{H}_{n}, \mathcal{E}_{n}\}$
Long. Beam +Trans.Targt	A _{LT}	$\mathcal{R}e\{\mathcal{H}_{p},\mathcal{E}_{p}\}$ $\mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{p}\}$

> DVCS with polarized electron beam and targets: Z. Ye, May 2015

NH3: Transversely polarized (proton)

He3: Transversely & Longitudinally polarized (neutron)

Suppressed at $t \rightarrow 0$ where $F_1^n \rightarrow 0$ but should be sensitive at large t

TCS @ SoLID

 $e P \rightarrow (e') \gamma P \rightarrow (e') P' e^+e^-$

[quasi-real photon beam, circularly polarized 50% \rightarrow 85%] run group proposal E12-12-006A (2015)

 highly dominated by BH (at any kinematic): high precision required to distinguish TCS signal sensitive to Real and Im. part of amplitudes

- comes from interference term sensitive to Im. part of TCS amplitude distinction between different GPD's parametrizations
- High luminosity and resolution of SoLID, large acceptance is a plus for this measurement.
- Complementary with future experiments/LOI: Hall B: E12-12-01 (2012) ; Hall C: LOI12-15-005 (2015) Hall B: same observables but lower luminosity ; Hall C: transversally polarized target.
- Could also be measured in muon pair [cf DDVCS].

DDVCS @ SoLID

 $e P \rightarrow e' P' \mu^{+} \mu^{-}$

Interest : GPD extracted at $x \neq \xi$ How : lever arm with Q^2/Q^2 ratio

LOI12-15-005 (2015)

•

cross section and beam spin asymmetry for 2 kinematics vs phi (DVCS-like angle)

- phenomenological efforts ongoing for interpretations and to lead the proposal

- plan to turn LOI of 2015 into a run group proposal in 2016 (with E12-12-006)

SoLID: first DDVCS LOI (Hall B LOI also in progress), very high luminosity and acceptance needed Goal: run "parasitic" with another experiment to show feasibility, then dedicated experiment if possible

Muon detector for "parasitic" SoLID DDVCS (with $J/\psi exp.$)

- Muons detector: from CLEO
 - Forward
 - Reuse 2nd and 3rd layer iron
 - Muon chambers between iron
- Move chambers with magnet
- Test one chamber using Ar/Co2 maybe in Temple (N. Sparveri)

Luminosity requirements and other experiments @12 GeV

$\frac{\text{DVCS (only unpolarized target)}}{\text{CLAS12: } 10^{35} \text{ cm}^{2}\text{s}^{-1}}$ $\text{NPS: } 10^{37} \text{ cm}^{-2}\text{s}^{-1}$ $\text{SoLID: } 10^{37} \text{ cm}^{-2}\text{s}^{-1} \text{ (*)}$	TCS CLAS12: 100+20 days, 10^35 cm ⁻² s ⁻¹ (unpolarized target) NPS: 10^35 cm ⁻² s ⁻¹ (*)	DDVCS (unpolarized target) CLAS12: 10^{37} cm ⁻² s ⁻¹ (*) SoLID: 10^{38} cm ⁻² s ⁻¹ (*)
(*)= feasibility to be demonstrated	(transversally polarized target) SoLID: 50 days, 10^37 cm ⁻² s ⁻¹	

Comparison of cross sections for the different processes (at xbj~0.33): [remarks for the kinematic shown and for JLab kinematic only]

dvcs and bh "cross sections" are comparable here: dvcs>bh (not the case in general) cross sections order ~pb – nb bh>>tcs (always about 2 order of magnitude) cross sections order ~ pb

DDVCS: order of fb, very narrow phase space, bh>>ddvcs

Very high luminosity required for TCS and DDVCS

Summary / work ongoing

Thanks to its high luminosity and large acceptance SoLID could provide unique opportunities for GPD physics

- DVCS: goal = LOI at next PAC
 - simulations, background
 - experimental requirements: setup -recoil detector?, resolution...
 - counting rates
- TCS: run group proposal accepted in 2015
 - still some effort for TCS and background simulations
- DDVCS: LOI in 2015, goal = run group proposal this year
 - phenomenological effort: interpretation of the results, interferences with meson production, fits...
 - simulations of DDVCS and background (in progress)
 - experimental setup: muon detector...
 - counting rates

Need of manpower

=> join our workshop "ECT dileptons" at Trento, Oct. 24-28, 2016 infos: camsonne@jlab.org

Open questions

- Resolution
 - Exclusivity by missing mass only
 - Electron
 - calorimeter resolution (do we need improvement ?)
 - Optimize proton acceptance
- Cross sections measurement : Accuracy possible in SoLID
- Luminosity
 - Can we run more than 10^37 cm⁻²s⁻¹ and measure cross sections ? (Tracking efficiency in background, PID)
- Evaluation of improved statistics impact on GPDs extraction
- Parallel experiments: trigger requirements

BACKUP SLIDES

Figure 5: TCS $A_{\odot U}$ on the neutron (top left panel), TCS $A_{\odot U}$ on the proton (top right panel), DVCS A_{LU} on the neutron (bottom left panel), DVCS A_{LU} on the proton (bottom right panel) as a function of J^u and J^d . Calculations are done for $\phi = 90^\circ, \xi = 0.2, Q'^2 = 7 \text{ GeV}^2, -t = 0.4 \text{ GeV}^2$ and θ integrated over $[\pi/4, 3\pi/4]$.

DVCS

target	observable	Other exp	Current luminosity	detector	Access CFF
Н	asymmetry	CLAS12, NPS	10^35 10^37		Fit (Hp Htp)
Н	Difference Crossection	CLAS12 NPS	10^35 10^37		Im Hp
D	asymmetry	CLAS12			lm En
D	Cross section	CLAS12			Im En
NH3	asymmetry		10^35		Im Ep
NH3	asymmetry		10^35		
He3	Beam spin asymmetry		10^36		Im Hp
He3	Target spin asymmetry		10^36		
HD			4.10^33		
He4					He4 GPD

dvmp

Target	Pion	Observable	Other exp	Lumi	Detector	Access
Н	π	asymmetry	CLAS12, NPS			Im H
н		Crossection	CLAS12, NPS			
D		asymmetry	CLAS12			
D		Cross section	CLAS12			
NH3		asymmetry				
NH3		asymmetry				
He3		Beam spin asymmetry				
He3		Target spin asymmetry				
	He4					He4 GPD