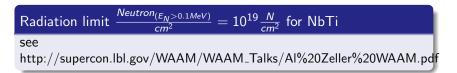
JULIU

1000

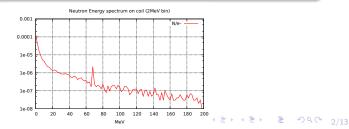
Radiation and Activation with SoLID

Outline


- Director Review suggestions
 - Status
 - Radiation on Coils
 - At Director Review
 - Limit of $10^{19} \frac{N}{cm^2}$ for NbTi
 - Simulation study of expected neutron fluence with SoLID

Lorenzo Zana The University of Edinburgh

January 12, 2016


1000

Radiation on Coils (From director review)

FLUKA Simulation FULL FLUX integrated in the total Coil

Also considering that FLUKA is off of an order of magnitude in this angle range, we are expecting a flux of $Neutron_{(E_N > 0.1 MeV)} = 10^{18} N$, well in the limit for NbTi

Director Review suggestions

Radiation on Coils

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQで 3/13

Limit of $10^{19} \frac{N}{cm^2}$ for NbTi

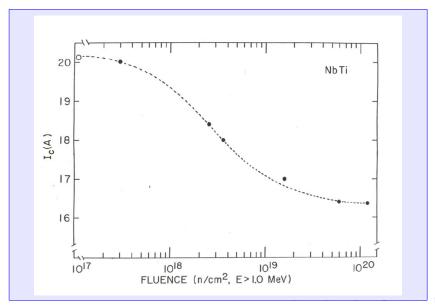
What effect is expected around the limit of $10^{19} \frac{N}{cm^2}$ with a superconductor of NbTi?

more detailes can be found at http://supercon.lbl.gov/WAAM/WAAM_Talks/Al%20Zeller%20WAAM.pdf

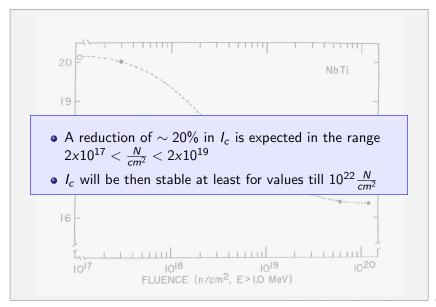
Limit of $10^{19} \frac{N}{cm^2}$ for NbTi

What effect is expected around the limit of $10^{19} \frac{N}{cm^2}$ with a superconductor of NbTi?

more detailes can be found at http://supercon.lbl.gov/WAAM/WAAM_Talks/Al%20Zeller%20WAAM.pdf


The direct offect of high neutron fluxes on NbTi superconductor will affect the Critical Current (I_c)

- I_c = The maximum current that a superconductor can carry with zero resistance.
- A current greater than *I_c* will cause the superconductor to revert to its normal state.


Director Review suggestions

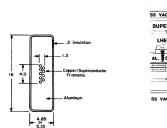
Radiation on Coils $\circ \circ \circ \circ \circ$

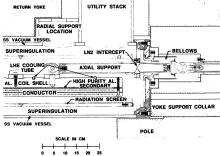
How high fluence of neutrons affects I_c

How high fluence of neutrons affects I_c

(ロ) (母) (ヨ) (ヨ) (ヨ) (マ) (7/13)

Update Simulation on coil design

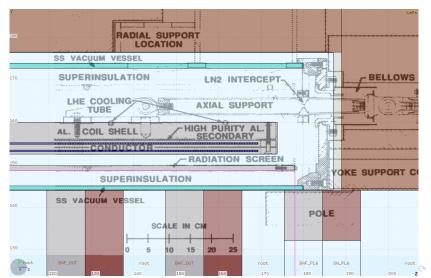

Suggested updates from communications with J.Benesch


As for neutron damage to NbTi: did your calculations take into account 1. the 3-5 mm of stainless steel which is the inner bore of the cryostat

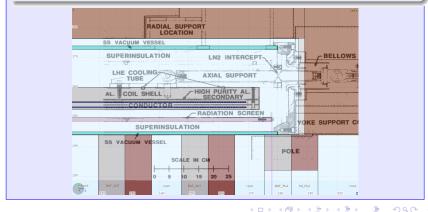
- 2. the 3-5 mm of aluminum thermal shield 3-5 cm beyond (1)
- 3. the 6+ mm of stainless steel which is the helium vessel
- 4. any winding forms left at the inner diameter of the coils
- 5. the copper matrix in which the NbTi is imbedded. Typical conductors of the era were 66-80% copper with balance NbTi (2:1 to 4:1 Cu:SC).

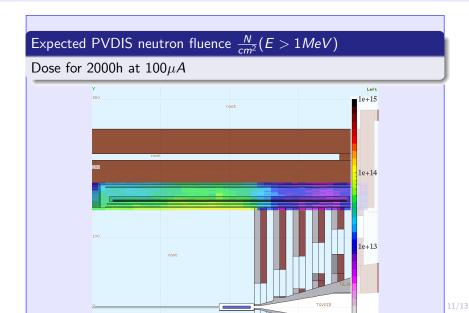
Update Simulation on coil design

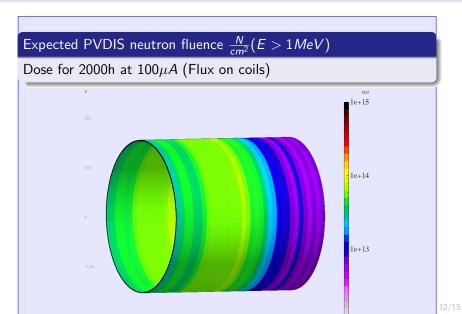
Coil design for CLEOII

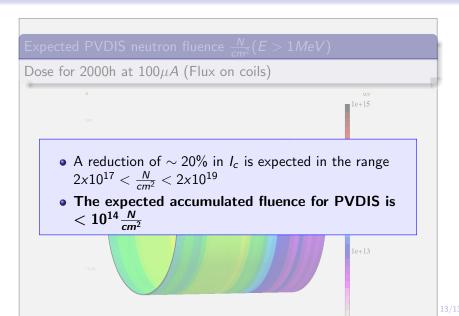


< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 8/13


Update Simulation on coil design


Simulation update




Different SoLID configurations

The PVDIS configuration with Deuterium target present the main source for neutron fluxes on the coils

