
Deep Exclusive π^- Production with transversely polarized He3 using SoLID

A run-group proposal with E12-10-006

Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, *from Univ. of Regina* and Zhihong Ye

05/07/2016

Drafted proposal: https://userweb.jlab.org/~yez/Work/solid/solid_neutron_DEMP.pdf

Generalized Parton Distribution:

- ➤ GPDs give the 3D spatial distributions of quarks and gluons in a nucleon
- GPDs interrelate the longitudinal and transverse momentum structure of partons within a fast moving hadron.

	$H^{q,g}(x,\xi,t)$ spin avg.	$E^{q,g}(x,\xi,t)$ spin avg.
At leading twist-2, four quark chirality conserving GPDs for each quark, gluon type.	no heli. flip	helicity flip
	$\widetilde{H}^{q,g}(x,\xi,t)$	$\tilde{E}^{q,g}(x,\xi,t)$
Because quark helicity is conserved in the hard scattering regime, the produced meson	spin diff. no heli. flip	spin diff. helicity flip

Leading order QCD predicts:

acts as a helicity filter.

- Vector meson production sensitive to unpolarized GPDs, H and E.
- Pseudoscalar mesons sensitive to polarized GPDs, \tilde{H} and \tilde{E} .

Generalized Parton Distribution:

- Integral of transverse components reduces GPDs into one-dimensional PDF
- Access to Angular Momenta of quarks & gluons.
- \geq First moments of GPDs are related to nucleon elastic form factors through modelindependent sum rules:

$$\sum_{q} e_{q} \int_{-1}^{+1} dx H^{q}(x,\xi,t) = F_{1}(t)$$

$$\sum_{q} e_{q} \int_{-1}^{+1} dx E^{q}(x,\xi,t) = F_{2}(t)$$

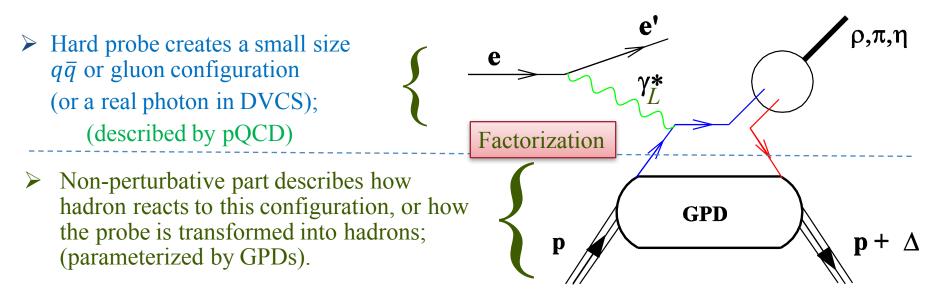
$$\sum_{q} e_{q} \int_{-1}^{+1} dx \widetilde{H}^{q}(x,\xi,t) = G_{A}(t)$$

$$Isovector axial t-dep. poorly$$

$$\sum_{q} e_{q} \int_{-1}^{+1} dx \widetilde{H}^{q}(x,\xi,t) = G_{A}(t)$$

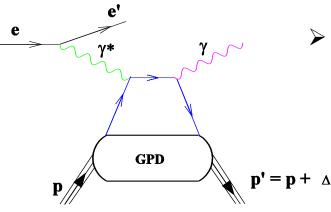
$$D = I_{A} = I_{A}$$

Isovector axial form factor. t-dep. poorly known.

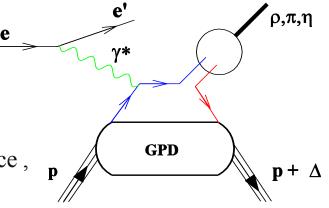

Dirac and Pauli elastic nucleon

t -dependence fairly well known.

 $\sum_{q} e_q \int_{-1} dx \tilde{E}^q(x,\xi,t) = G_p(t)$


Pseudoscalar form factor. Very poorly known.

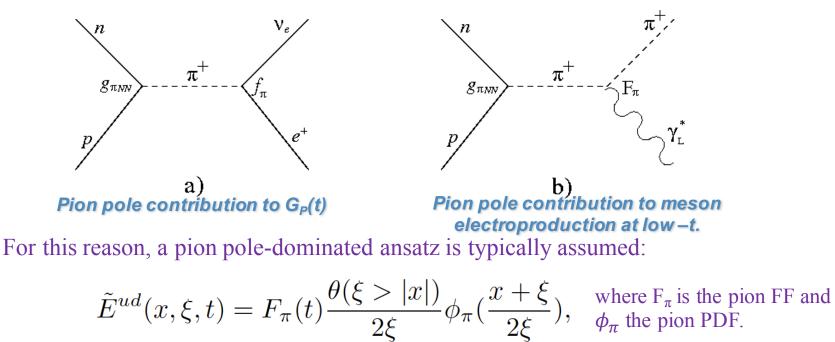
Factorization of Hard Reactions:


- Hard exclusive meson electroproduction first shown to be factorizable by Collins, Frankfurt & Strikman [PRD 56(1997)2982].
- ✓ Factorization applies when the γ^* is longitudinally polarized.
 - \checkmark corresponds to small size configuration compared to transversely polarized γ^* .

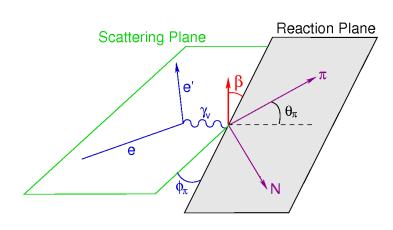
Exclusive Hard Processes to probe GPDs:

Deeply Virtual Compton Scattering (DVCS):
 Sensitive to all four GPDs.

- Deep Exclusive Meson Production (DEMP):
 - \checkmark Vector mesons sensitive to spin-average H, E.
 - ✓ Pseudoscalar mesons sensitive to spin-difference , \tilde{H} and \tilde{E} .



Need a variety of Hard Exclusive Measurements to disentangle different GPDs.


• Probe GPD- \tilde{E} with DEMP:

$$\sum_{q} e_q \int_{-1}^{+1} dx \tilde{E}^q(x,\xi,t) = G_p(t)$$

- ✓ GPD- \tilde{E} is not related to an already known parton distribution.
- Experimental information can provide new nucleon structure info unlikely to be available from any other source.
- ✓ $G_P(t)$, which is highly uncertain, receives contributions from J^{PG}=0⁻⁻ states, and contains an important pion pole contribution.

Target Single Spin Asymmetry in DEMP:

Asymmetry with transversely polarized target and longitudinally polarized virtual phone

$$\mathbf{A}_{\mathbf{L}}^{\perp} = \frac{\int_{\mathbf{0}}^{\pi} \mathbf{d}\beta \frac{\mathbf{d}\sigma_{\mathbf{L}}^{\pi^{-}}}{\mathbf{d}\beta} - \int_{\pi}^{2\pi} \mathbf{d}\beta \frac{\mathbf{d}\sigma_{\mathbf{L}}^{\pi^{-}}}{\mathbf{d}\beta}}{\int_{\mathbf{0}}^{2\pi} \mathbf{d}\beta \frac{\mathbf{d}\sigma_{\mathbf{L}}^{\pi^{-}}}{\mathbf{d}\beta}}$$

 $d\sigma_{\pi}{}^{L}$ = exclusive π cross section for longitudinal γ^{*} β = angle between transversely polarized target vector and the reaction plane.

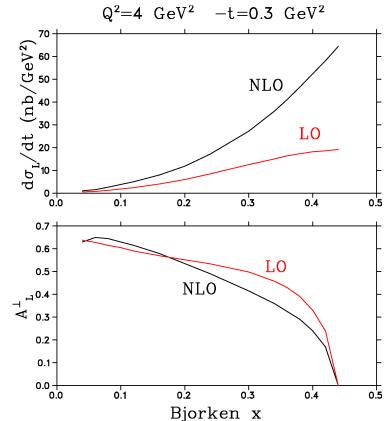
Unpolarized Cross section

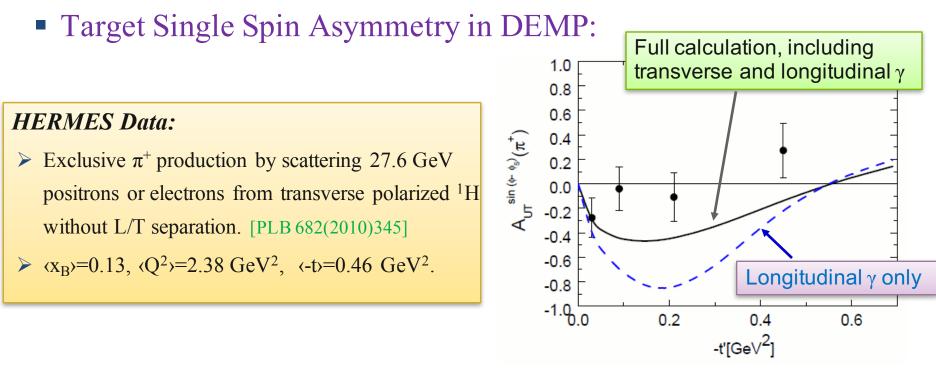
$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_{\rm L}}{dt} + \frac{d\sigma_{\rm T}}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{\rm LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{\rm TT}}{dt} \cos 2\phi$$

Polarized cross section has additional components

$$\sigma_{t} = -P_{\perp} \sin \beta \left[\sigma_{TT}^{y} + 2\epsilon \sigma_{L}^{y} \right] + L/T Separation$$

$$sin \beta module \qquad -P_{\perp} \sin \beta \left[\epsilon (\cos 2\phi_{s} \cos 2\beta + \sin 2\phi_{s} \sin 2\beta) \sigma_{TT'}^{y} \right]$$


$$-P_{\perp} \sin \beta \left[\sqrt{2\epsilon(1+\epsilon)} (\cos \phi_{s} \cos \beta + \sin \phi_{s} \sin \beta) \sigma_{LT}^{y} \right]$$


$$-P_{\perp} \cos \beta \left[\sqrt{2\epsilon(1+\epsilon)} (\sin \phi_{s} \sin \beta - \cos \phi_{s} \cos \beta) \sigma_{LT}^{x} \right]$$

$$-P_{\perp} \cos \beta \left[\epsilon (\sin 2\phi_{s} \sin 2\beta - \cos 2\phi_{s} \cos 2\beta) \sigma_{TT}^{x} \right]^{7}$$

- Target Single Spin Asymmetry in DEMP:
- Frankfurt et al. have shown A_L^{\perp} vanishes if \tilde{E} is zero [PRD 60(1999)014010].
 - If $\tilde{E} \neq 0$, the asymmetry will display a sin β dependence.
 - Higher order corrections, which may be significant at low Q^2 for σ_L , likely cancel in A_L^{\perp} .
- Belitsky and Müller calculations:
 - ✓ At Q²=10 GeV², NLO effects can be large, but cancel in A_L^{\perp} (PL B513(2001)349).
 - ✓ At Q²=4 GeV², higher twist effects even larger in σ_L , but still cancel in the asymmetry (CIPANP 2003).

This relatively low value of Q^2 for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

- ✓ Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences. [Eur Phys.J. C65(2010)137]
- ✓ Because no factorization theorems exist for exclusive π production by transverse photons, these data cannot be simply interpreted in terms of GPDs.

- Target Single Spin Asymmetry in DEMP:
- The study of A_L^{\perp} is also important for the reliable extraction of F_{π} from p(e,e' π^+)n data at high Q². [Frankfurt, Polyakov, Strikman, Vanderhaeghen PRL 84(2000)2589].
 - Non-pion pole contributions need to be accounted for in order to reliably extract F_{π} from σ_L data at low -t.
 - 12 GeV Pion Form Factor experiment restricted to $Q^2=6 \text{ GeV}^2$ to keep non-pole contributions to an acceptable level (- $t_{min} \le 0.2 \text{ GeV}^2$).

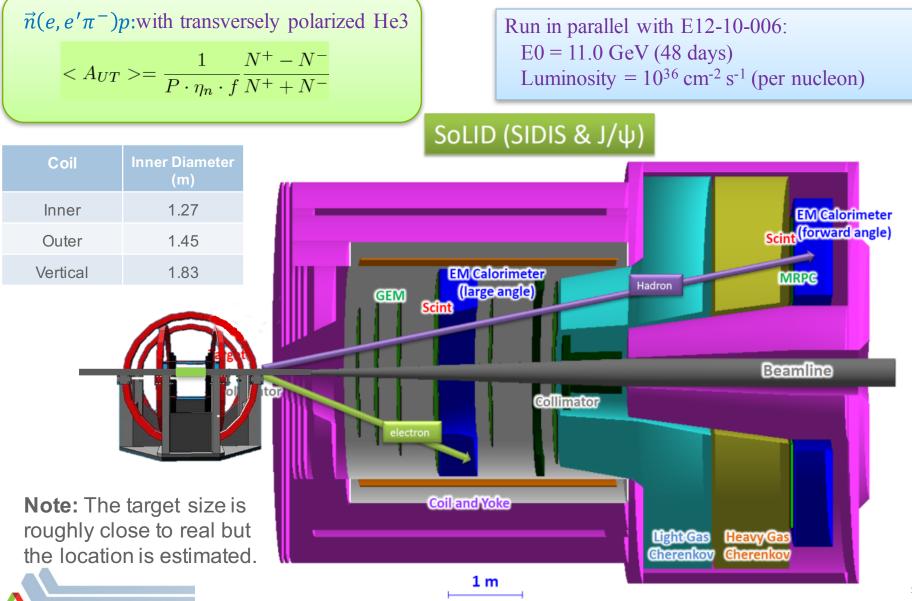
 $> A_L^{\perp}$ is an interference between pseudoscalar and pseudovector contributions.

- Help constrain the non-pole contribution to $p(e,e^{2}\pi^{+})n$.
- Assist the more reliable extraction of the pion form factor.
- Possibly extend the kinematic region for F_{π} measurements.
 - To cleanly extract A_L^{\perp} , we need:
 - Target polarized transverse to γ^* direction.
 - Large acceptance in π azimuthal angle (i.e. φ , β).
 - Measurements at multiple beam energies and electron scattering angles.
 - ε dependence (L/T separation); controlled systematic uncertainties

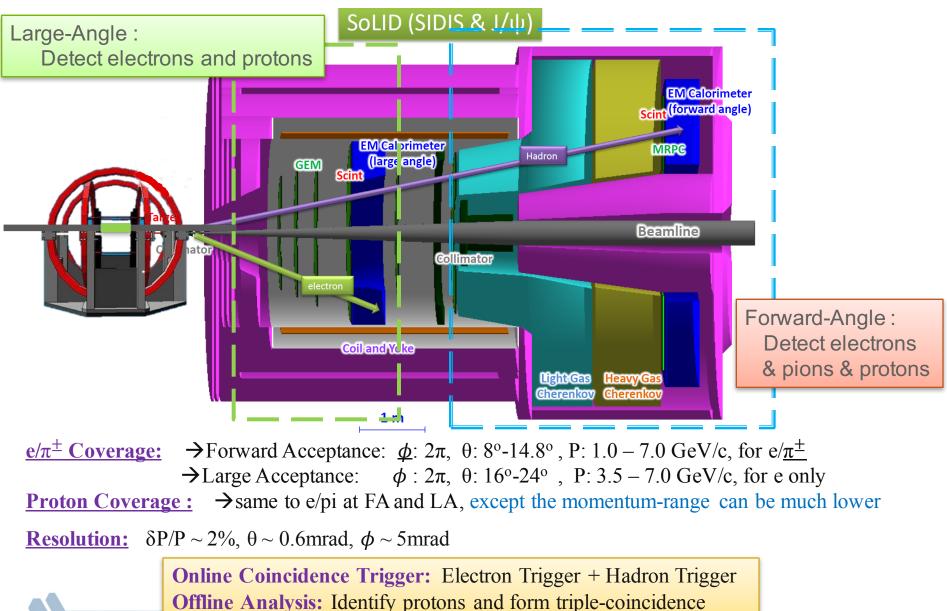
Complementarity of SoLID and SHMS+HMS Experiments

SHMS+HMS:

• HMS detects scattered e'.


SHMS detects forward, high momentum π .

- Expected small systematic uncertainties to give reliable L/T separations.
- Good missing mass resolution to isolate exclusive final state.
- Multiple SHMS angle settings to obtain complete azimuthal coverage up to 4° from q-vector.
- It is not possible to have complete azimuthal coverage at larger –t, where A_L[⊥] is largest.
- PR12-12-005 by GH, D. Dutta, D. Gaskell, W. Hersman.

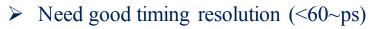

SoLID:

- Complete azimuthal coverage, polar angle θ= 8° up to 24° for e and π
- High luminosity, particle ID and vertex resolution capabilities well matched to the experiment.
- L/T separation is not possible, the asymmetry is "diluted" by T, TT contributions.
- The measurement is valuable as it is the only practical way to obtain A_{UT}^{sin(φ-φ,)} over a wide kinematic range.
- Complementary to Hall C measurement.

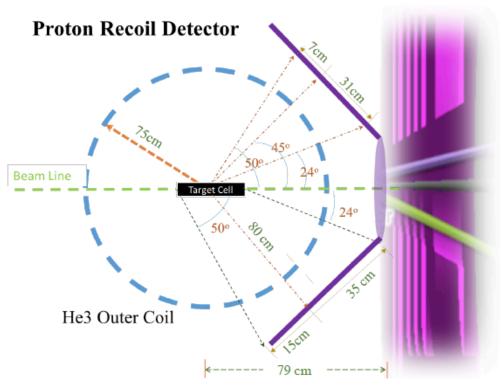
Measure DEMP with SoLID-SIDIS

Measure DEMP with SoLID-SIDIS

Proton Recoil Detector


A Conceptual Design:

- ✓ Cover angles of 24° to 50° 2π on the azimuthal angle
- ✓ Inner Radius=32 cm


Outer Radis = 67 cm

Detector Length = 50 cm

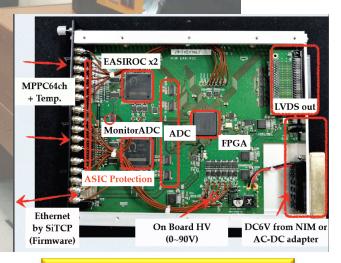
✓ Distance from Target = 79cm (far end touches the magnet)

- Need fine segments due to huge low energy backgrounds
 (An aluminum foil cover can block most of low energy electrons)
- Need to provide angle information for offline background suppression
- > Photon-Detectors need to work in strong magnetic fields from target & solenoid
- A good candidate: <u>Scintillating Fiber Tracker</u>
- Geant4 Simulation is undergoing

A 10cm² SciFi-Tracker made

by a medical group

Scintillating Fiber Tracker

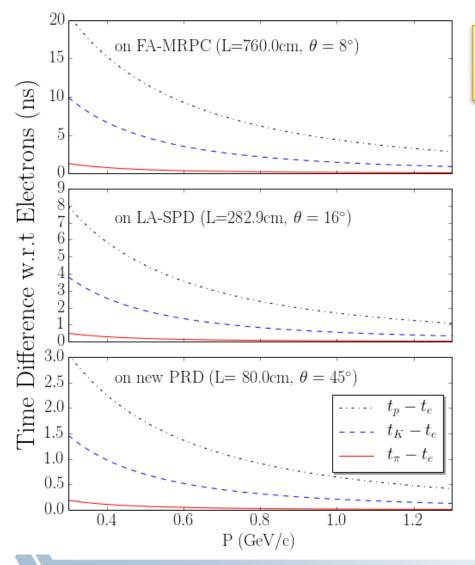

THE OWNER WHEN THE PARTY OF

 $\begin{array}{c} 3000 \\ 1 \\ 2500 \\ 2000 \\ 1500 \\ 1000 \\ 500 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}$

(M=1.25 × 10⁶)

Number of detected photons

SiPM → Avalanche Photodiode (APD) pixels working in Geiger-mode

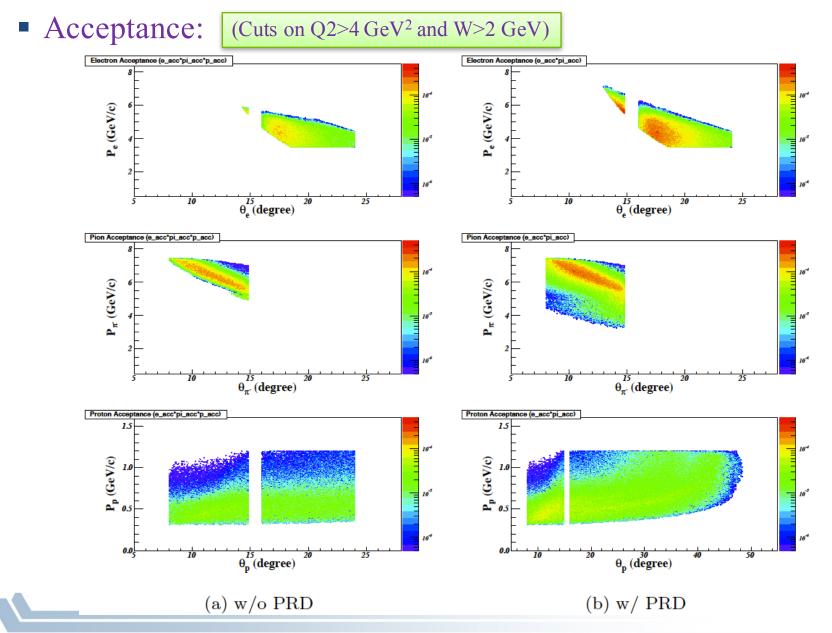


EASIROC+SiPM ("portable"!)

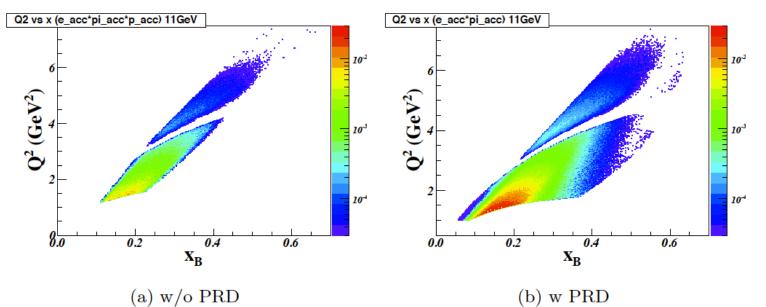
A prototype project funded by JSA 2014 Postdoc Prize

Proton Detection

Using Time-Of-Flight as Proton-PID:

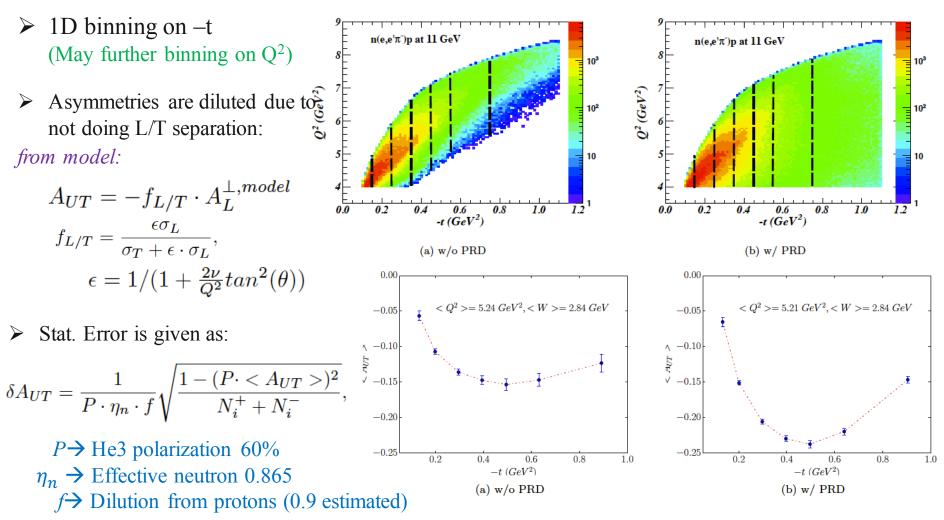


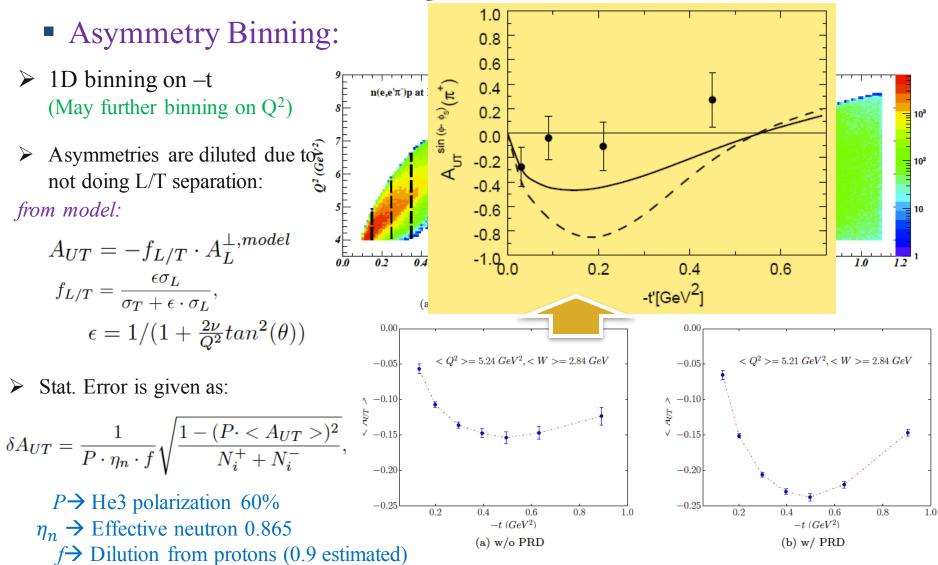
Need $>5\sigma$ timing resolution to identify protons from other charged particles.


- Existing SoLID Timing Detectors:
 - ✓ Timing + Momentum Info
 - ✓ MRPC & FASPD at Forward-Angle

cover $8^0 \sim 14.8^0$; >3ns separation

- ✓ LASPD at Large-Angle cover $14^0 \sim 24^0$; >1ns separation
- A new Proton Recoil Detector: No momentum info; Only reply on 1D TOF cuts
 - ✓ Cover $14^0 \sim 24^0$;
 - ✓ Good separation from electrons/pions (lowP π^- highP $p \ge 0.3$ ns, need $\sigma < 60$ ps)
 - Hard to separate kaons from protons low-P *K mixed with high-P p*


Kinematic & Rates:



$1 < Q^2 < 4 \ \mathrm{GeV^2}$	$Q^2 > 4 \text{ GeV}^2$	Total			
DEMP: $\vec{n}(e, e'\pi^- p)$ Triple-Coincidence (Hz)					
$23.91 \ (6.21)$	0.59~(0.28)	24.50(6.49)			
SIDIS: $\vec{n}(e, e'\pi^-)X$ Double-Coincidence (Hz)					
1388.85	35.77	1424.62			

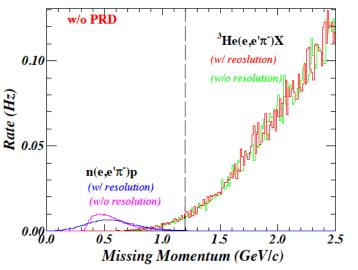
- Rates were estimated with a model developed by Garth & Zafar.
- Good physics rates are at Q²>4GeV²:
 0.53 Hz (or 0.31 Hz w/o PRD)
- Dominated background are SIDIS events

Asymmetry Binning:

Missing Mass

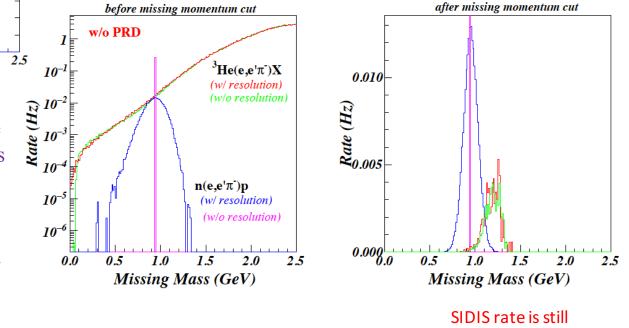
Exclusivity of DEMP Events

- > With Proton detection, most of background events can be suppressed
- Major background would be SIDIS events


from (a) Protons in "X",

(b) Accidental coincidence of SIDIS events with protons in all background sources

- Reconstructing Missing Momentum and Missing Mass to further suppress background during offline analysis.
- ✓ Assuming all "X" in SIDIS contain protons (hard to estimate the real branching-ratio) ✓ Fold in detector resolutions: $\frac{\delta P}{P} = \frac{2\%}{\sqrt{E}}$, $\delta\theta = 0.6 \ mrad$, $\delta\phi = 5 \ mrad$
- Nucleus-Effect, Fermi Motion and Radiative Effect are not considered yet but some of them are expected to be small in the asymmetry extraction.


Missing Mass

Exclusivity of DEMP Events

- ✓ Other backgrounds will be more uniform in the MM, asymmetries of which can be evaluated and corrected.
- Rest of random background will largely suppressed in the asymmetry.

- ✓ Missing Momentum are well separated for SIDIS and DEMP.
 ✓ Cutting P_{miss}<1.2 GeV/c, reject most of SIDIS background
 - Background is expected to be even smaller, since SIDIS rate are overestimated

overestimated for safety

Systematic Uncertainties

 Detector-wide, DEMP measurement shares the same systematic uncertainties with SIDIS experiments:

Sources	Relative Value
Beam Polarization	2%
Target Polarization	3%
Acceptance	3%
Other Contamination	< 5%
Radiation Correction	1%

• Other sources of uncertainties are still under estimation.

To-Do-List

- Projections were made by assuming a free neutron. We are implementing Fermi-Motion and Radiative Effect in the generator.
- Optimizing the projections, e.g. further binning on Q²
- Further designing and evaluating the Proton-Recoil-Detector
- Study more background situation
- Evaluating more systematic errors
- Double check of all calculations

Summary

- GPDs provide new information of the 3D spatial distributions of quarks and gluons; connect 1D-PDF, Form-Factors and so on. (Four GPDs for each quark flavor or gluon: H, E, H and E)
- DEMP can measure *H* and *E*; It is an unique process to probe *E*, which gets access to pion form factors.
- Target Single-Spin Asymmetry of DEMP has relatively low requirement on the Q² (Higher order effects are largely cancelled even at Q²~4 GeV²).
- Using SoLID-SIDIS configuration and transversely polarized He3, we can measure asymmetries of neutron DEMP

Complementary to the Hall-C experiment with limited coverage but doing L/T separation

- Run in-parallel with SIDIS experiments; No new beam time; No configuration change needed except potentially adding a new proton recoil detector
- Expect to have very good statistical errors over wide -t coverage
- Proton Detection will help us to maintain the Exclusivity. Missing Momentum and Missing Mass cuts can further reject most background.

Backup Slides

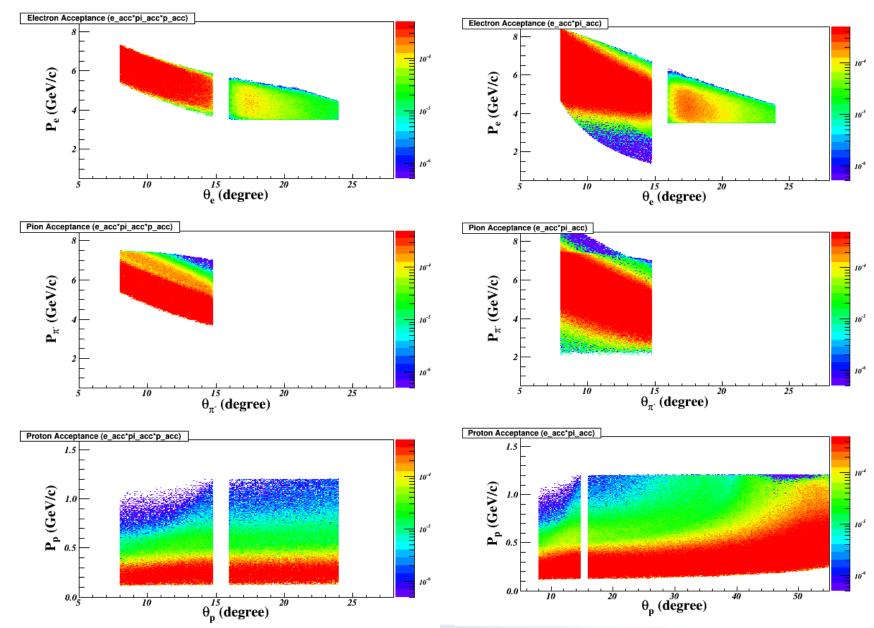
DEMP TSSA Connection to GPDs

L. Frankfurt et. al., PRD 60 014010 (1999):

• Charge Pion Production:

$$\mathcal{A} = \frac{1}{|S_{\perp}|} \frac{\int_{0}^{\pi} d\beta |\mathcal{M}(\beta)|^{2} - \int_{\pi}^{2\pi} d\beta |\mathcal{M}(\beta)|^{2}}{\int_{0}^{2\pi} d\beta |\mathcal{M}(\beta)|^{2}} = \frac{2\sigma_{1}}{\pi\sigma_{0}}$$

$$\sigma = \sigma_0 + \sigma_1([\vec{p}_{\perp}', \vec{S}_{\perp}] \cdot \vec{e}_z) / |\vec{p}_{\perp}'| = \sigma_0 + \sigma_1 |\vec{S}_{\perp}| \sin \beta,$$


$$\mathcal{A}_{+,0} = \frac{|\Delta_{\perp}|}{\pi M_N} \frac{\xi \operatorname{Im}(A_{+,0}B_{+,0}^*)}{|A_{+,0}|^2 \left(1 - \frac{\xi^2}{4}\right) - |B_{+,0}|^2 \frac{t\xi^2}{16M_N^2} - \frac{\xi^2}{2} \operatorname{Re}(A_{+,0}B_{+,0}^*)}$$

$$A_{+} = \int_{-1}^{1} d\tau \tilde{H}^{(3)}(\tau,\xi,t) (3\alpha^{-}(\tau) - \alpha^{+}(\tau))$$
$$B_{+} = \int_{-1}^{1} d\tau \tilde{E}^{(3)}(\tau,\xi,t) (3\alpha^{-}(\tau) - \alpha^{+}(\tau)),$$

$$\begin{split} \widetilde{H}^{(3)}(\tau,\xi,t) &= \widetilde{H}_{u}(\tau,\xi,t) - \widetilde{H}_{d}(\tau,\xi,t), \\ \widetilde{E}^{(3)}(\tau,\xi,t) &= \widetilde{E}_{u}(\tau,\xi,t) - \widetilde{E}_{d}(\tau,\xi,t), \\ \alpha^{\pm}(\tau) &= \frac{1}{\tau + \frac{\xi}{2} - i0} \pm \frac{1}{\tau - \frac{\xi}{2} + i0}, \end{split}$$

27

Acceptance w/ Q2>1GeV^2 Cut

