Proposal Number: LOI12-16-007

Hall: A

No

SoLID

Title:First Measurement of the $e - {}^{3}\overrightarrow{He}$ Parity Violation Deep
Inelastic Scattering Asymmetry using an Upgraded Polarized
 3 He Target

Contact person: Y. X. Zhao

Beam time request:

	Days requested for approval: Tune up included in beam line request:	180 No
Beam	characteristics:	
	Energy:	11
	Current:	60 µA
	Polarization:	NA
Targe	ts:	
	Nuclei:	60 cm ³ He
	Target Cryo Load:	< 100 watt
	Rastering:	Yes
	Polarized:	Yes
	Radiator	No
Spect	rometers:	
	HRSL	No

Special requirements/requests:

Special addition to the previously considered configuration of SoLID with a new upgrade to the polarized ³He gas target. The required target density is 16 times over the stage 2 upgrade of polarized ³He target for the Gen-II experiment with a larger polarizing cell and the target cell kept in cryogenic conditions on the beam line.

Technical Comments:

HRSR

Other

1. This letter of intent proposes to measure the parity violating asymmetry between an unpolarized beam and polarized ³He to extract $g_1^{\gamma Z}$ the polarized electroweak interference structure function of the nucleon. The SoLID apparatus configuration is similar to two approved SIDIS experiments E12-10-006 and E12-11-007 and it is claimed that it would minimize setup and installation if scheduled adjacent to one of them, except for the target installation.

- 2. The required target for this measurement will be new equipment. The target is billed as a stage 3 upgrade of the polarized ³He gas target with 16 times higher density than the stage 2 upgrade, with a 60 cm glass cell with metal endcaps on the beam line kept at 77 K. While it is not known if ³He can be polarized at over 50 atm, the collaboration acknowledges that the target will require significant R&D and feels confident that it will work. The liquid nitrogen source on site has not been reliable so the collaboration should elaborate more on their use of cryogens.
- 3. The LOI requires 180 days just for the physics measurement but does not provide contingency for target density reduction with beam on and lost helicity states due to beam trips. There are no estimates of luminosity loss due to the target density reduction when the beam is on. Numerical estimates done with computational fluid dynamics for the tritium gas target, 40 cm closed cryogenic cell, at a beam of only 20 μ A are about 15%. The ³He cell is a 60 cm long and the beam is 60 μ A so it could have significant luminosity loss due to density reduction, which has not been accounted for in the beam time request.
- 4. The PV asymmetry will be made by flipping the ³He polarization every minute. A pair of helicities will be made over a 2 minute window. In the beam time request there is no account on how the beam trips will reduce the running efficiency by cutting the number of valid helicity pairs that will go into the PV asymmetry calculation.