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SIDIS	Tracking	with	One	Time	Sample	From	APV
• Data	size	limitation	allows	only	one	time	sample	from	the	APV,	if	we	aim	for	100k	Hz

• Run	APV	in	deconvolution-mode	 and	take	one	deconvoluted time	sample	 (still	worth	testing	and	
considering)

• Or	one	raw	time	sample	 (assumed	 for	this	 study)

• With	only	one	time	sample,	we	cannot	apply	noise	cut,	the	most	effective	cut	so	far	for	rejecting	
out-of-time	noise	(how	this	cut	behave	under	trigger	jitter	and	noise	still	need	to	be	tested)

• Threshold	cut	on	APV	signal	amplitude	becomes	essentially	the	only	tool	to	suppress	noise
• Fairly	high	occupancy	and	hit	multiplicity	after	threshold	cut	(ADC	=	120):

• Hit	multiplicity	contains	false	hits
• number	will	go	up	if	consider	20	GEM	sectors	(currently	assume	30)
• Lead	to	large	amount	of	combinations	~1017 to	1018 currently

GEM	1 GEM 2 GEM	3 GEM	4 GEM	5 GEM	6

Occupancy 2.5% 9.7% 4.1% 2.6% 2.0% 1.5%

Hit Multi. 420 5048 1860 1136 460 424
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• At	this	level,	Progressive	tracking	doesn’t	work
• Large	angle	can	still	hold	up	thanks	to	the	LAEC	
• Forward	angle	breaks	down	first	due	to	high	hit	multiplicity	 and	lack	of	enough	
support	from	downstream	detectors	(ECal,	MRPC…	are	about	3m	away	
downstream	from	the	last	GEM)
• Execution	time	also	increase	dramatically	(	𝛰(𝑛$) algorithm	)

SIDIS	Tracking	with	One	Time	Sample	From	APV

Zero	track Single	track Multi	track

Efficiency 2.1% 38.4% 59.5%

0 1 2 3 4 5

#	of	misidentified	 hit	
per	track

28.7% 8.6% 2.8% 2.6% 55.4% 1.9%

Previous	result	with	Progressive	tracking	and	one	time	sample	from	APV	(Forward	Angle)
Single	electron	signal	track
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Some	Small	Modifications	on	GEM	Digitization
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the	six	in	terms	
of	background	
rate)
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the	six	in	terms	
of	background	
rate)

• Add	Gaussian	 noise	 to	digitized	 output	(width	 =	20	ADC	values,	 rough	estimate	for	long	 strip	for	SoLID)
• Position	 resolution	 changes	from	~30um	 to	45um	at	0%	background	 level	 (with	one	sample)
• Due	to	lack	of	statistics	of	background	 event,	in	addition	 to	randomizing	 signal	 arrival	time,	 also	rotate	the	

space	with	random	azimuthal	angle
• In	order	to	keep	the	correlation	for	high	energy	background	 track,	each	background	 event	has	only	 one	

randomized	 azimuthal	angle

𝜎	~	60	𝑢𝑚
𝜎	~	45	𝑢𝑚

𝑞0 −𝑞2
𝑞0 + 𝑞2



Kalman	Filter	Algorithm

1.	Prediction:	 Predict	state	
vector	at	next	measurement	
site

2.	Error	Propagation:	 propagate	covariance	matrix	to	the	
next	measurement	 site	and	calculate	process	 noise	matrix	
along	the	way

3.	Filtering:	the	weighted	mean	of	
the	predicted	state	vector	and	
measurement	 vector	on	detector	k	
is	calculated

Kalman	Filter:	a	recursive	fitting	algorithm	based	on	𝜒5 minimization
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Kalman	Filter	Algorithm

1.	Prediction:	 Predict	state	
vector	at	next	measurement	
site

2.	Error	Propagation:	 propagate	covariance	matrix	to	the	
next	measurement	 site	and	calculate	process	 noise	matrix	
along	the	way

3.	Filtering:	the	weighted	mean	of	
the	predicted	state	vector	and	
measurement	 vector	on	detector	k	
is	calculated

Kalman	Filter:	a	recursive	fitting	algorithm	based	on	𝜒5 minimization

Arbitration:	decide	whether	we	
want	to	accept	the	hit	based	on	
the	prediction,	 the	propagated	
covariance	matrix	and	𝜒5
increment	 if	accept			

Using	Kalman	 Filter	as	track	
finder

7



Kalman	Filter	Algorithm

• Kalman	Filter	track	finder	advantages:
• Evolution	of	track	parameters,	favors	local	

information
• Concurrent	track	finding	and	fitting
• Discriminating	power	improved	as	more	hits	

added	

• Track	representation	or	state	vector	(x,	y,	tx,	ty,	q/p)
• Allow	smooth	transition	between	uniform	and	

fringe	field
• Rely	completely	on	accurate	field	map	

measurement

• Kalman	Filter	track	finder	disadvantages:
• Relatively	slow	due	to	field	propagation	and	large	computation	power	requirement	(5-D	matrices	

propagation,	multiplication	and	inversion)
• Weak	discriminating	power	at	early	stage	
• Rely	on	efficient	seed	finding	
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First	Step	in	KF	Track	Finding	-- Seeding

• Seed	for	Kalman	Filter:	the	minimum number	of	hits	that	can	be	used	to	give	initial	estimation	of	the	
track	parameters

• Requirement	for	seed	finding:
• Selection	 rules	 too	rigorous	 ->	lost	of	true	seed	at	the	beginning,	 almost	impossible	 to	recover	the	true	track
• Selection	 rules	 too	loose	 ->	large	amount	 of	seeds,	 greatly	increase	 execution	 time
• Need	to	consider	multiple	 seed	pattern:	the	true	hit	may	lost	due	 to	GEM	inefficiency
• This	 can	by	itself	 an	independent	 tracking	algorithm	

• Current	seed	finding	strategy:
• Look	 for	three	types	 of	doublet	 seeds	 from	 the	three	most	downstream	GEMs	

detectors	
• Using	analytic	 formulae	 to	estimate	initial	track	parameters
• Use	sanity	 cuts	on	the	estimated	momentum	 and	angles,	
• Use	Runge-Kutta propagation	to	check	it	(come	from	target	and	lead	to	a	hit	on	

EC)
• Merge	doublet	 seeds	 to	form	triplet	seeds	 (requires	 three	types	 of	double	 seed	

joint	 at	front,	middle	 and	back	GEM)
• Once	a	triplet	seed	 is	form,	 deactivate	the	corresponding	 doublets	 (avoid	

repetition	 of	track	finding)

Three	types	of	
doublet	 seeds

9



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

2

4

6

8

10

12

0

10

20

30

40

50

plot
0 0.1 0.2 0.3 0.4 0.5 0.60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

plot

0 0.1 0.2 0.3 0.4 0.5 0.60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

100

200

300

400

500

600

700

800

plot

• Using	coordinate	 difference	between	 two	hits	 to	
estimate	the	local momentum	 and	angle	info	of	 the	
track	(Kalman	 Filter	needs	 local	info)

• Assume	 the	track	is	straight	at	first	so:																		
𝜃 = atan	(∆𝑟/∆𝑧) and	Φ = atan	(∆𝑦/∆𝑥)

• Using	local	MC	 information	 to	correction	functions	 to	
estimate	the	real	theta	and	phi	of	the	track
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Difference	between	
local	MC	theta and	the	
theta estimate	using	
straight	line

Difference	between	
local	MC	phi and	the	
phi estimated	using	
straight	line

∆𝜑	(𝑟𝑎𝑑) ∆𝜑	(𝑟𝑎𝑑)

First	Step	in	KF	Track	Finding	-- Seeding
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• Using	Runge-Kutta for	the	doublet	
seed	to	check	whether	 it	can	
connect	to	EC	and	target
• Distance	between	predicted	 EC	hit	
and	actual	EC	hit	<	20	cm	for	FA	(6	
cm	for	LA)

• Difference	between	Predicted	
vertex	z	and	target	center	<	60	cm	
for	FA	(50	cm	for	LA)

• Using	analytic	formulae	and	two	
hits	to	estimate	the	initial	local
momentum	and	angles	of	the	track
• Red	distribution	 – MC	local	info
• Blue	distribution	 – Estimated	local	
info
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First	Step	in	KF	Track	Finding	-- Seeding
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• Follow	the	direction	of	seed,	predict	next	measurement

• Add	if	a	hit	is	found,	which	satisfies	the	following	requirements:
• Fall	within	the	prediction	window	(window	size	fixed	at	early	stage,	auto-adjustable	later	on	
based	on	the	covariance	matrices	of	the	track	parameters)

• 𝜒5 increment	less	than	60

• Can	tolerate	no	more	than	1	missing	hit:
• Triplet	seed	can	have	one	more	missing	hit	later	on
• Doublet	seed	cannot	miss	anymore
• Tracks	have	at	least	4	hits	 in	FA,	and	3	hits	in	LA

Second	Step	in	KF	Track	Finding	– Track	Following
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Second	Step	in	KF	Track	Finding	– Track	Following
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Kalman	Filter	predicted	x	minus	actual	measured	x	coordinate	(FA,	0%	background)

Tracking	starts	
here	at	the	last	
GEM	detector

Weak	prediction	
power	at	early	
stage

Gradually	
improve	
with	more	
correct	hits	
added	

Relatively	
stable	after	
the	third	hit
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Second	Step	in	KF	Track	Finding	– Track	Following
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Kalman	Filter	predicted	x	minus	actual	measured	x	coordinate,	weighted	by	the	error	in	prediction	
(FA,	0%	background)

Tracking	starts	
here	at	the	
last	GEM	
detector

Narrow	dist.	
Indicates	over-
estimated	error

𝜎 = 1.1	 𝜎 = 1.0	 𝜎 = 0.86	



Third	Step	in	KF	Track	Finding	– Final	Selection

• Charge	asymmetry:	require	at	least	three	hits	have	good	charge	asymmetry	
• 𝑞0 − 𝑞2 𝑞0 + 𝑞2 < 0.5⁄

• 𝜒5/𝑛𝑑𝑓 <	30

• Tracks	that	satisfied	 the	above	condition	will	be	propagated	to	the	target	and	
downstream	detectors
• Finer	cut	for	the	vertex	z	position
• Finer	cut	for	the	match	between	predicted	EC	hit	and	actual	EC	hit	position
• EC	Cluster	energy	match	with	the	track	energy	(+/- 50%),	only	for	LA

• Rank	tracks	with	certain	rules
• Track	with	more	hits	ranks	higher	
• Track	with	smaller	𝜒5/𝑛𝑑𝑓 ranks	higher
• Select	the	best	track	if	share	common	hits
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Third	Step	in	KF	Track	Finding	– Final	Selection
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• 𝜒5distribution	doesn’t	quite	follow	the	expected	curve,	likely	
due	to	overestimation	of	error	at	early	stage.	Need	some	fine-
tuning

• +/- 5cm from	the	edge	of	the	target	cell	(10	cm	for	FA	as	
vertex	z	resolution	will	be	worse)
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Third	Step	in	KF	Track	Finding	– Final	Selection
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• Optimal	state	at	the	vertex	at	the	moment
• Past	sites	do	not	contain	all	the	hit	information	
• Before	we	do	a	final	match	between	the	track	and	downstream	detectors,	we	can	either:

• Refit	the	track	forward	
• Using	Kalman	 Filter	smoothing	 technique	 (re-evaluate	the	past	site	based	on	 saved	state	vectors	and	

covariance	matrices	so	 far)
• Cut	at	+/- 5cm from	the	EC	hit

𝜎 = 1.1	(𝑐𝑚) 𝜎 = 1.1	(𝑐𝑚)



KF	Track	Finding	– FA Preliminary	result
• Condition:	 (1)	Single	 electron	signal.	(2)	100%	background.	 (3)	GEM	resolution	 (45um	at	0%	background)	 (4)	
EC	resolution	 (1cm	for	position,	 10% 𝐸⁄ 	for	energy)	 (5)	p	of	signal	track	0.9	~	7	GeV
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KF	Track	Finding	– LA Preliminary	result
• Condition:	 (1)	Single	 electron	signal.	(2)	100%	background.	 (3)	GEM	resolution	 (45um	at	0%	background)	 (4)	
EC	resolution	 (1cm	for	position,	 10% 𝐸⁄ 	for	energy)	 (5)	p	of	signal	track	0.9	~	7	GeV
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• Framework	of	Kalman	Filter	track	finding	has	been	developed
• For	SIDIS:

• Give	acceptable	result	with	1	time	sample	for	single	electron	event
• To	do:	Add	hadron	and	do	coincident	tracking	(2~4	weeks)

• For	PVDIS:
• In	principle	the	same	algorithm	works	(has	been	used	to	do	track	fitting)
• To	do:	digitize	PVDIS	events	and	make	sure	the	program	runs	for	the	configuration	(2~4	
weeks).	Test	how	the	noise	cut	behave	with	trigger	jitter	and	noise.

• Certain	modification	may	needed	based	on	the	characteristic	of	PVDIS	tracks

• For	J/Psi:
• Will	be	extremely	challenging	if	use	only	one	sample	(much	higher	GEM	occupancy	and	low	
momentum	of	signal	particle)
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Conclusion

GEM	Digitization GEM	Decoding Track Finding Track	Fitting

SIDIS-He3 Yes Yes Only electron Yes

SIDIS-Proton Yes Yes No No

PVDIS Yes* Yes* Only Field	Off Yes

J/Psi Yes Yes No Yes

• GEM	digitization	need	to	keep	up	with	simulation	 (requires	 continuous	 development)
• *	For	PVDIS,	 only	 old	digitization	data	exist	(readout	 strip	arranged	in	favor	of	Tree	search),	 should	 be	easy	to	get	new	

digitization



Other	Tracking	Algorithm	for	SoLID
• Straight	track	is	easier to	find	 than	curved	track
• If	tracks	are	straight	in	one	space,	we	should	 make	the	most	out	of	it	(PVDIS	tracks	in	r-z	space)
• If	tracks	are	not	straight,	sometimes	 they	can	be	mapped	 into	other	space	where	they	are	straight
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Other	Tracking	Algorithm	for	SoLID
• Straight	track	is	easier to	find	 than	curved	track
• If	tracks	are	straight	in	one	space,	we	should	 make	the	most	out	of	it	(PVDIS	tracks	in	r-z	space)
• If	tracks	are	not	straight,	sometimes	 they	can	be	mapped	 into	other	space	where	they	are	straight

• Conformal	 mapping	 – mapping	 circles	 that	pass	the	origin	into	 straight	line
• Riemann	 track	finder	 – mapping	 2-D	circle	into	3-D	plane	

• Techniques	 in	identifying	 straight	track:
• Straight	line	 least	square	 fit	
• Tree	search	– template	matching	algorithm
• Hough	transform	– mapping	 points	 in	 physical	 space	into	lines	 in	parameter	space
• Artificial	neutral	network

• Kalman	filter	is	rather	popular	 fitter	in	tracking	reconstruction,	 but	it	may	not	be	the	best	in	various	 situation
• Not	optimal	if	noise	 is	non-Gaussian:	 Bremsstrahlung	 radiation	for	electrons
• Gaussian	 Sum	Filter:	approximate	noise	with	Gaussian	 mixture		
• Deterministic	 Annealing	 Filter:	deal	with	competing	measurements	 and	 reject	wrong	assignment	 of	hits

• Various	machine	 learning	 algorithm	can	be	useful	 as	well	i.e.	boosted	 decision	 tree	may	be	useful	 for	seeding	
and	finally	 selection	 of	tracks		

See	 http://nuclear.gla.ac .uk/twiki/pub /Main /PandaFeDatWorkshop2009April /3-4.Muenchov_D avid.FPGA_trackin g_at_HAD ES.pdf for	more	details
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Other	Tracking	Algorithm	for	SoLID
• Straight	track	is	easier to	find	 than	curved	track
• If	tracks	are	straight	in	one	space,	we	should	 make	the	most	out	of	it	(PVDIS	tracks	in	r-z	space)
• If	tracks	are	not	straight,	sometimes	 they	can	be	mapped	 into	other	space	where	they	are	straight

• Conformal	 mapping	 – mapping	 circles	 that	pass	the	origin	into	 straight	line
• Riemann	 track	finder	 – mapping	 2-D	circle	into	3-D	plane	

• Techniques	 in	identifying	 straight	track:
• Straight	line	 least	square	 fit	
• Tree	search	– template	matching	algorithm
• Hough	transform	– mapping	 points	 in	 physical	 space	into	lines	 in	parameter	space
• Artificial	neutral	network

• Kalman	filter	is	rather	popular	 fitter	in	tracking	reconstruction,	 but	it	may	not	be	the	best	in	various	 situation
• Not	optimal	if	noise	 is	non-Gaussian:	 Bremsstrahlung	 radiation	for	electrons
• Gaussian	 Sum	Filter:	approximate	noise	with	Gaussian	 mixture		
• Deterministic	 Annealing	 Filter:	deal	with	competing	measurements	 and	 reject	wrong	assignment	 of	hits

• Various	machine	 learning	 algorithm	can	be	useful	 as	well	i.e.	boosted	 decision	 tree	may	be	useful	 for	seeding	
and	finally	 selection	 of	tracks		

• Using	𝑤 = 𝑥5 + 𝑦5, turning	2D	circle	into	3D	plane,	 thus	slow	 and	non-linear	 circle	fit	
can	be	replaced	by	fast	linear	 plenary	 fit

• (𝑥	 − 𝑎)5+	(𝑦	 − 𝑏)5= 𝑅5 	−→ 𝑤	 − 2𝑎𝑥	 − 2𝑏𝑦 +	𝑎5 +	𝑏5 	−	𝑅5 = 0

• And	 then	notice	that	for	helix	 along	z-axis:	𝑧 = 𝑅𝜑/ tan 𝜃

• Thus	 a	complete	 helix	fit	is	replace	by	a	plenary	 fit	plus	 a	straight	line	fit

• Basic	step	in	track	finding	 can	be	quite	 similar	 as	Kalman	Filter.	However,	requires	
relatively	uniform	 field

See	 https://indico.gsi.de/getFile.p y/access?contribId =3&resId =0&material Id=slid es&conf Id=665 for	more	 details
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Other	Tracking	Algorithm	for	SoLID
• Straight	track	is	easier to	find	 than	curved	track
• If	tracks	are	straight	in	one	space,	we	should	 make	the	most	out	of	it	(PVDIS	tracks	in	r-z	space)
• If	tracks	are	not	straight,	sometimes	 they	can	be	mapped	 into	other	space	where	they	are	straight

• Conformal	 mapping	 – mapping	 circles	 that	pass	the	origin	into	 straight	line
• Riemann	 track	finder	 – mapping	 2-D	circle	into	3-D	plane	

• Techniques	 in	identifying	 straight	track:
• Straight	line	 least	square	 fit	
• Tree	search	– template	matching	algorithm
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Other	Tracking	Algorithm	for	SoLID
• Straight	track	is	easier to	find	 than	curved	track
• If	tracks	are	straight	in	one	space,	we	should	 make	the	most	out	of	it	(PVDIS	tracks	in	r-z	space)
• If	tracks	are	not	straight,	sometimes	 they	can	be	mapped	 into	other	space	where	they	are	straight

• Conformal	 mapping	 – mapping	 circles	 that	pass	the	origin	into	 straight	line
• Riemann	 track	finder	 – mapping	 2-D	circle	into	3-D	plane	

• Techniques	 in	identifying	 straight	track:
• Straight	line	 least	square	 fit	
• Tree	search	– template	matching	algorithm
• Hough	transform	– mapping	 points	 in	 physical	 space	into	lines	 in	parameter	space
• Artificial	neutral	network

• Kalman	filter	is	rather	popular	 fitter	in	tracking	reconstruction,	 but	it	may	not	be	the	best	in	various	 situation
• Not	optimal	if	noise	 is	non-Gaussian:	 Bremsstrahlung	 radiation	for	electrons
• Gaussian	 Sum	Filter:	approximate	noise	with	Gaussian	 mixture		
• Deterministic	 Annealing	 Filter:	deal	with	competing	measurements	 and	 reject	wrong	assignment	 of	hits

• Various	machine	 learning	 algorithm	can	be	useful	 as	well	i.e.	boosted	 decision	 tree	may	be	useful	 for	seeding	
and	finally	 selection	 of	tracks		

• In	physical	 space	𝑦 = 𝑚𝑥 + 𝑡
• In	parameter	space	𝑡 = −𝑥𝑚 + 𝑦
• Co-linear	 hits	becomes	 intersecting	

lines	 in	the	parameter	space
• Turning	 straight	track	identification	

problem	 into	problem	 of	find	
maxima	in	histogram	
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Other	Tracking	Algorithm	for	SoLID
• Straight	track	is	easier to	find	 than	curved	track
• If	tracks	are	straight	in	one	space,	we	should	 make	the	most	out	of	it	(PVDIS	tracks	in	r-z	space)
• If	tracks	are	not	straight,	sometimes	 they	can	be	mapped	 into	other	space	where	they	are	straight

• Conformal	 mapping	 – mapping	 circles	 that	pass	the	origin	into	 straight	line
• Riemann	 track	finder	 – mapping	 2-D	circle	into	3-D	plane	

• Techniques	 in	identifying	 straight	track:
• Straight	line	 least	square	 fit	
• Tree	search	– template	matching	algorithm
• Hough	transform	– mapping	 points	 in	 physical	 space	into	lines	 in	parameter	space
• Artificial	neutral	network	 – favors	straight	track,	but	allows	 small	banding	 angle
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• Not	optimal	if	noise	 is	non-Gaussian:	 Bremsstrahlung	 radiation	for	electrons
• Gaussian	 Sum	Filter:	approximate	noise	with	Gaussian	 mixture		
• Deterministic	 Annealing	 Filter:	deal	with	competing	measurements	 and	 reject	wrong	assignment	 of	hits

• Various	machine	 learning	 algorithm	can	be	useful	 as	well	i.e.	boosted	 decision	 tree	may	be	useful	 for	seeding	
and	finally	 selection	 of	tracks		
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GEM	Occupancy
Threshold GEM	1	(%) GEM	2	(%) GEM 3	(%) GEM	4	(%) GEM	5	(%) GEM	6	(%)

0 5.00 17.23 8.90 5.00 4.83 3.72

60 3.49 13.22 6.04 3.57 2.98 2.22

80 3.09 11.92 5.28 3.18 2.58 1.91

100 2.75 10.75 4.63 2.84 2.25 1.66

120 2.47 9.70 4.08 2.55 1.99 1.46

140 2.21 8.78 3.63 2.31 1.78 1.30

Threshold GEM	1	(%) GEM	2	(%) GEM 3	(%) GEM	4	(%) GEM	5	(%) GEM	6	(%)

0 11.40 22.44 14.89 12.30 12.38 10.25

60 8.39 17.72 11.00 8.98 8.35 6.69

80 7.63 16.27 9.95 8.11 7.39 5.88

100 7.00 14.96 9.05 7.38 6.61 5.22

120 6.47 13.8 8.29 6.74 5.95 4.68

140 6.01 12.76 7.62 6.20 5.39 4.22

SIDIS

J/Psi


