SoLID Tracking

Weizhi Xiong Duke University SoLID Collaboration Meeting Aug 26th~27th, 2016

Outline

- SoLID-SIDIS tracking with 1 time-sample from APV25
- Kalman Filter as a track finding algorithm
 - Seed finding
 - Tracking following
 - Final selection
- Preliminary track finding and fitting results
- Conclusion
- Appendix
 - Other candidate algorithm for SoLID Tracking
 - GEM Occupancy for SIDIS and J/Psi

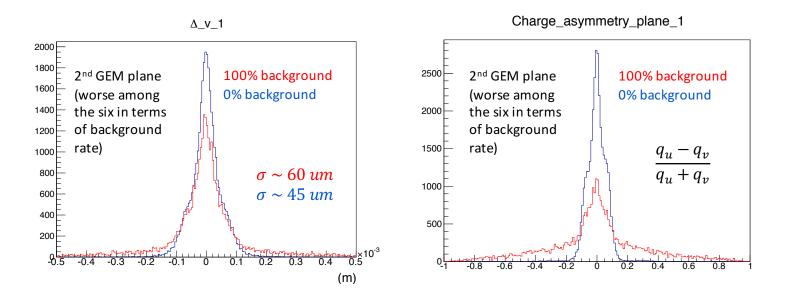
SIDIS Tracking with One Time Sample From APV

- Data size limitation allows only one time sample from the APV, if we aim for 100k Hz
 - Run APV in deconvolution-mode and take one deconvoluted time sample (still worth testing and considering)
 - Or one raw time sample (assumed for this study)
- With only one time sample, we cannot apply noise cut, the most effective cut so far for rejecting out-of-time noise (how this cut behave under trigger jitter and noise still need to be tested)
- Threshold cut on APV signal amplitude becomes essentially the only tool to suppress noise
- Fairly high occupancy and hit multiplicity after threshold cut (ADC = 120):

	GEM 1	GEM 2	GEM 3	GEM 4	GEM 5	GEM 6
Occupancy	2.5%	9.7%	4.1%	2.6%	2.0%	1.5%
Hit Multi.	420	5048	1860	1136	460	424

- Hit multiplicity contains false hits
- number will go up if consider 20 GEM sectors (currently assume 30)
- Lead to large amount of combinations $\sim 10^{17}$ to 10^{18} currently

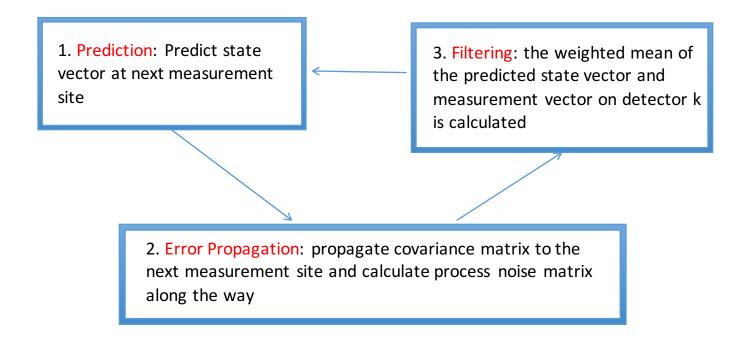
SIDIS Tracking with One Time Sample From APV


- At this level, Progressive tracking doesn't work
- Large angle can still hold up thanks to the LAEC
- Forward angle breaks down first due to high hit multiplicity and lack of enough support from downstream detectors (ECal, MRPC... are about 3m away downstream from the last GEM)
- Execution time also increase dramatically ($O(n^5)$ algorithm)

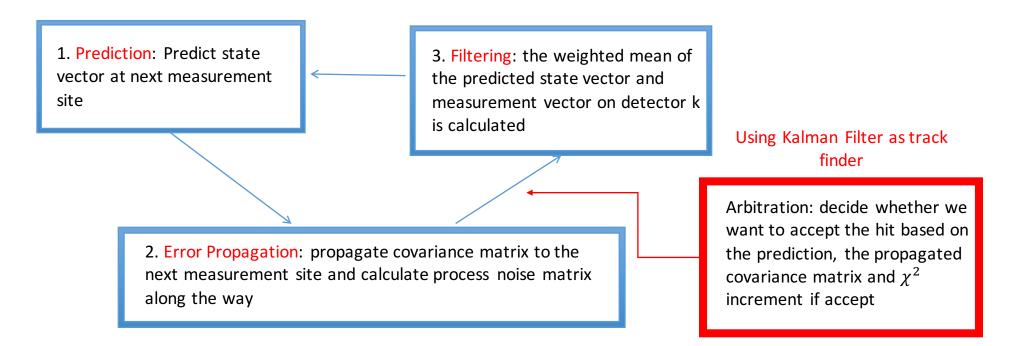
Previous result with Progressive tracking and one time sample from APV (Forward Angle) Single electron signal track

		Zero track	sing	le track	Multi track		
	Efficiency	2.1%	3	8.4%	59.5%		
	0	1	2	3	4	5	
# of misidentified him per track	28.7%	8.6%	2.8%	2.6%	55.4%	1.9%	

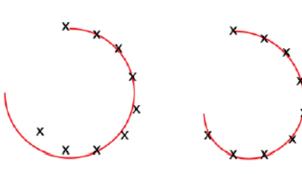
Some Small Modifications on GEM Digitization


- Add Gaussian noise to digitized output (width = 20 ADC values, rough estimate for long strip for SoLID)
- Position resolution changes from ~30um to 45um at 0% background level (with one sample)
- Due to lack of statistics of background event, in addition to randomizing signal arrival time, also rotate the space with random azimuthal angle
- In order to keep the correlation for high energy background track, each background event has only one randomized azimuthal angle

5


Kalman Filter Algorithm

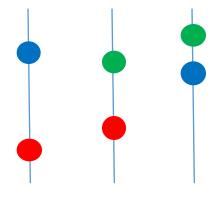
Kalman Filter: a recursive fitting algorithm based on χ^2 minimization


Kalman Filter Algorithm

Kalman Filter: a recursive fitting algorithm based on χ^2 minimization

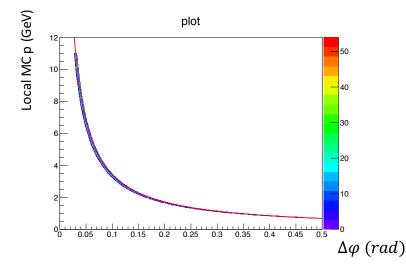
Kalman Filter Algorithm

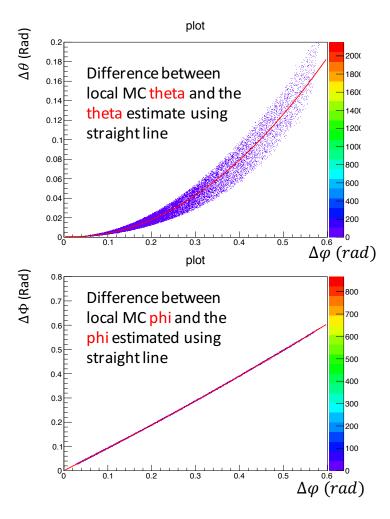
- Track representation or state vector (x, y, t_x, t_y, q/p)
 - Allow smooth transition between uniform and fringe field
 - Rely completely on accurate field map measurement
- Kalman Filter track finder advantages:
 - Evolution of track parameters, favors local information
 - Concurrent track finding and fitting
 - Discriminating power improved as more hits added
- Kalman Filter track finder disadvantages:
 - Relatively slow due to field propagation and large computation power requirement (5-D matrices propagation, multiplication and inversion)
 - Weak discriminating power at early stage
 - Rely on efficient seed finding


Least Squares Fit

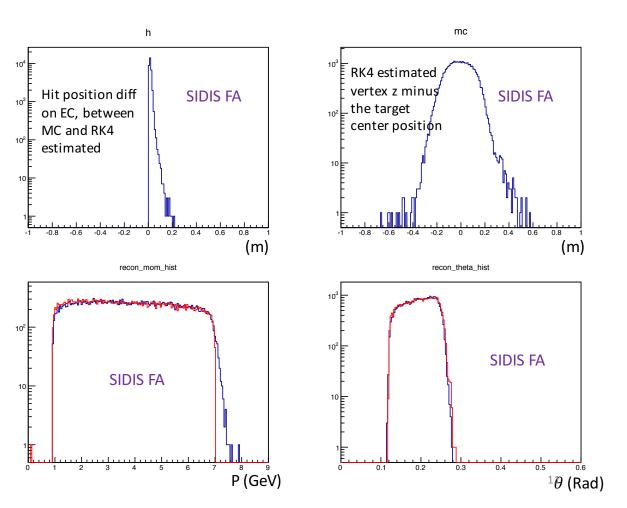
Kalman Filter

First Step in KF Track Finding -- Seeding


- Seed for Kalman Filter: the minimum number of hits that can be used to give initial estimation of the track parameters
- Requirement for seed finding:
 - Selection rules too rigorous -> lost of true seed at the beginning, almost impossible to recover the true track
 - Selection rules too loose -> large amount of seeds, greatly increase execution time
 - Need to consider multiple seed pattern: the true hit may lost due to GEM inefficiency
 - This can by itself an independent tracking algorithm
- Current seed finding strategy:
 - Look for three types of doublet seeds from the three most downstream GEMs detectors
 - Using analytic formulae to estimate initial track parameters
 - Use sanity cuts on the estimated momentum and angles,
 - Use Runge-Kutta propagation to check it (come from target and lead to a hit on EC)
 - Merge doublet seeds to form triplet seeds (requires three types of double seed joint at front, middle and back GEM)
 - Once a triplet seed is form, deactivate the corresponding doublets (avoid repetition of track finding)

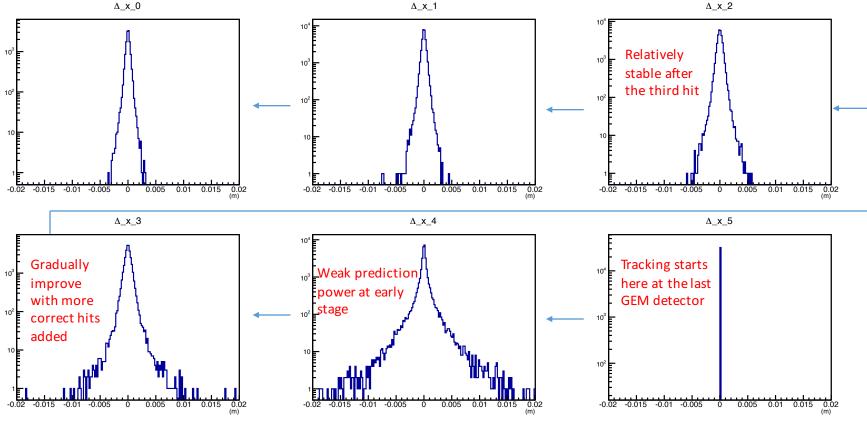

Three types of doublet seeds

First Step in KF Track Finding -- Seeding


- Using coordinate difference between two hits to estimate the local momentum and angle info of the track (Kalman Filter needs local info)
- Assume the track is straight at first so: $\theta = \operatorname{atan}(\Delta r / \Delta z)$ and $\Phi = \operatorname{atan}(\Delta y / \Delta x)$
- Using local MC information to correction functions to estimate the real theta and phi of the track

First Step in KF Track Finding -- Seeding

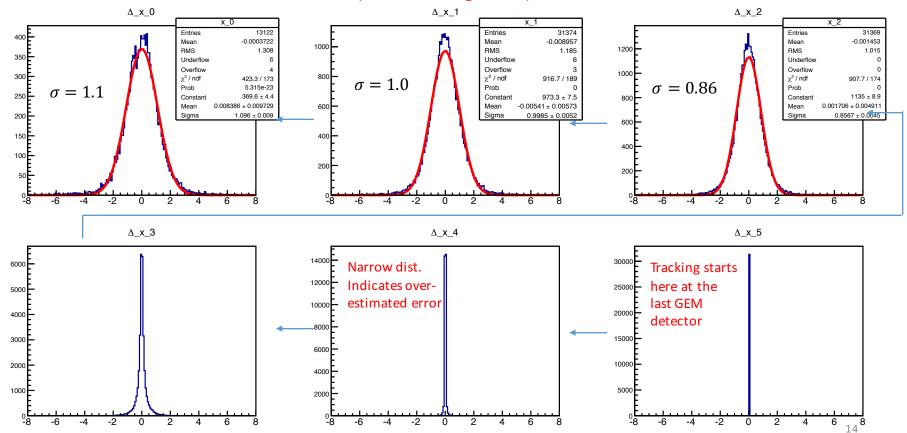
- Using Runge-Kutta for the doublet seed to check whether it can connect to EC and target
 - Distance between predicted EC hit and actual EC hit < 20 cm for FA (6 cm for LA)
 - Difference between Predicted vertex z and target center < 60 cm for FA (50 cm for LA)
- Using analytic formulae and two hits to estimate the initial local momentum and angles of the track
 - Red distribution MC local info
 - Blue distribution Estimated local info



Second Step in KF Track Finding – Track Following

- Follow the direction of seed, predict next measurement
- Add if a hit is found, which satisfies the following requirements:
 - Fall within the prediction window (window size fixed at early stage, auto-adjustable later on based on the covariance matrices of the track parameters)
 - χ^2 increment less than 60
- Can tolerate no more than 1 missing hit:
 - Triplet seed can have one more missing hit later on
 - Doublet seed cannot miss anymore
 - Tracks have at least 4 hits in FA, and 3 hits in LA

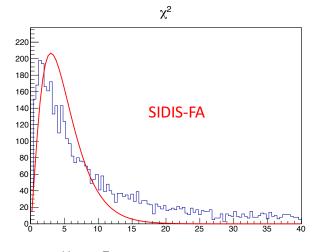
Second Step in KF Track Finding – Track Following

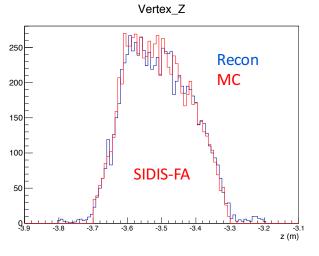

Kalman Filter predicted x minus actual measured x coordinate (FA, 0% background)

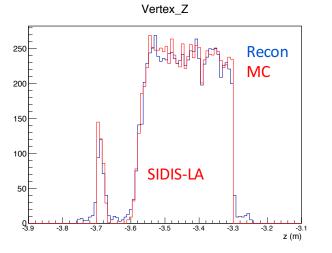
13

Second Step in KF Track Finding – Track Following

Kalman Filter predicted x minus actual measured x coordinate, weighted by the error in prediction (FA, 0% background)

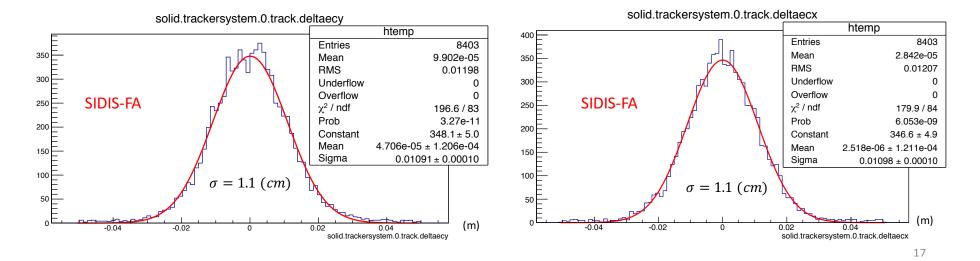



Third Step in KF Track Finding – Final Selection

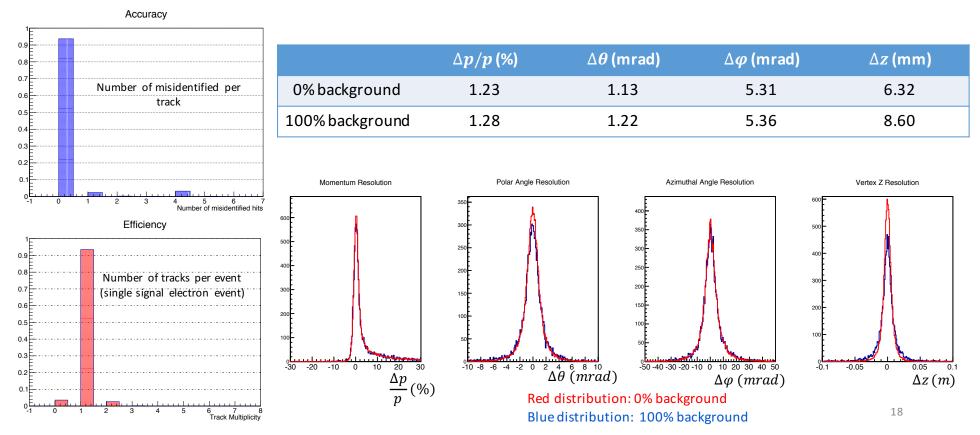

- Charge asymmetry: require at least three hits have good charge asymmetry
 - $q_u q_v/q_u + q_v < 0.5$
- $\chi^2/ndf < 30$
- Tracks that satisfied the above condition will be propagated to the target and downstream detectors
 - Finer cut for the vertex z position
 - Finer cut for the match between predicted EC hit and actual EC hit position
 - EC Cluster energy match with the track energy (+/- 50%), only for LA
- Rank tracks with certain rules
 - Track with more hits ranks higher
 - Track with smaller χ^2/ndf ranks higher
 - Select the best track if share common hits

Third Step in KF Track Finding – Final Selection

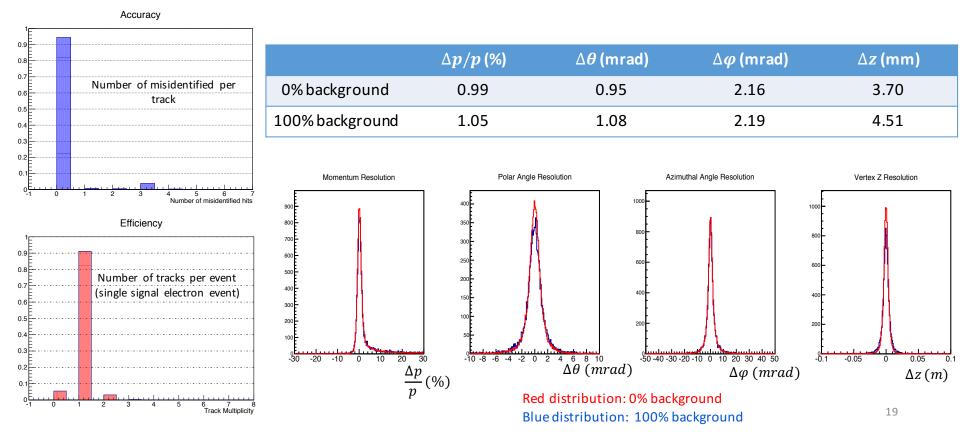
- χ^2 distribution doesn't quite follow the expected curve, likely due to overestimation of error at early stage. Need some fine-tuning
- +/- 5cm from the edge of the target cell (10 cm for FA as vertex z resolution will be worse)



16


Third Step in KF Track Finding – Final Selection

- Optimal state at the vertex at the moment
- Past sites do not contain all the hit information
- Before we do a final match between the track and downstream detectors, we can either:
 - Refit the track forward
 - Using Kalman Filter smoothing technique (re-evaluate the past site based on saved state vectors and covariance matrices so far)
- Cut at +/- 5cm from the EC hit


KF Track Finding – FA Preliminary result

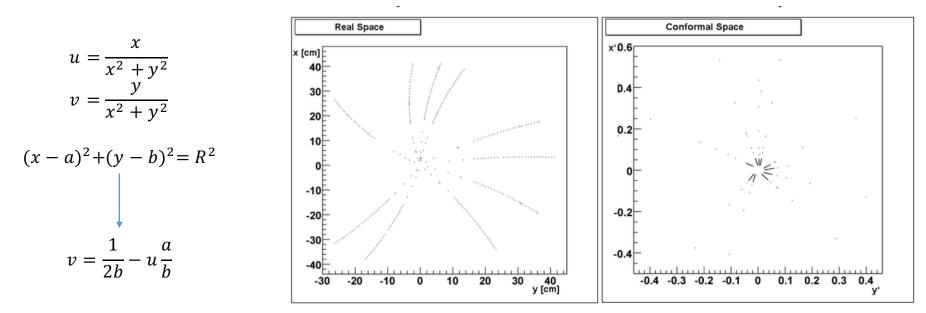
• Condition: (1) Single electron signal. (2) 100% background. (3) GEM resolution (45um at 0% background) (4) EC resolution (1cm for position, $10\%/\sqrt{E}$ for energy) (5) p of signal track 0.9 ~ 7 GeV

KF Track Finding – LA Preliminary result

• Condition: (1) Single electron signal. (2) 100% background. (3) GEM resolution (45um at 0% background) (4) EC resolution (1cm for position, $10\%/\sqrt{E}$ for energy) (5) p of signal track 0.9 ~ 7 GeV

Conclusion

- Framework of Kalman Filter track finding has been developed
- For SIDIS:
 - Give acceptable result with 1 time sample for single electron event
 - To do: Add hadron and do coincident tracking (2~4 weeks)
- For PVDIS:
 - In principle the same algorithm works (has been used to do track fitting)
 - To do: digitize PVDIS events and make sure the program runs for the configuration (2~4 weeks). Test how the noise cut behave with trigger jitter and noise.
 - Certain modification may needed based on the characteristic of PVDIS tracks
- For J/Psi:
 - Will be extremely challenging if use only one sample (much higher GEM occupancy and low momentum of signal particle)

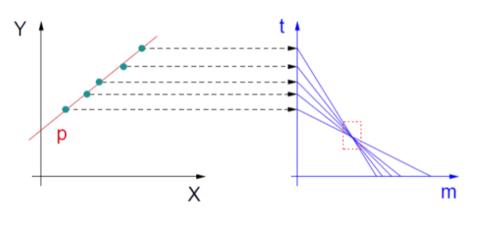

Conclusion

	GEM Digitization	GEM Decoding	Track Finding	Track Fitting
SIDIS-He ³	Yes	Yes	Only electron	Yes
SIDIS-Proton	Yes	Yes	No	No
PVDIS	Yes*	Yes*	Only Field Off	Yes
J/Psi	Yes	Yes	No	Yes

- GEM digitization need to keep up with simulation (requires continuous development)
- * For PVDIS, only old digitization data exist (readout strip arranged in favor of Tree search), should be easy to get new digitization

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight
 - Conformal mapping mapping circles that pass the origin into straight line


See http://nuclear.gla.ac.uk/twiki/pub/Main/Pand aFeDatWorkshop2009April/3-4.Muenchov_David.FPGA_tracking_at_HADES.pdf for more details

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight
 - <u>Conformal mapping</u> mapping circles that pass the origin into straight line
 - Riemann track finder mapping 2-D circle into 3-D plane
 - Using $w = x^2 + y^2$, turning 2D circle into 3D plane, thus slow and non-linear circle fit can be replaced by fast linear plenary fit
 - $(x a)^2 + (y b)^2 = R^2 \longrightarrow w 2ax 2by + a^2 + b^2 R^2 = 0$
 - And then notice that for helix along z-axis: $z = R\varphi / \tan(\theta)$
 - Thus a complete helix fit is replace by a plenary fit plus a straight line fit
 - Basic step in track finding can be quite similar as Kalman Filter. However, requires relatively uniform field

See <u>https://indico.gsi.de/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=665</u> for more details

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight
 - Conformal mapping mapping circles that pass the origin into straight line
 - Riemann track finder mapping 2-D circle into 3-D plane
- Techniques in identifying straight track:
 - Straight line least square fit
 - Tree search template matching algorithm

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight
 - Conformal mapping mapping circles that pass the origin into straight line
 - Riemann track finder mapping 2-D circle into 3-D plane
- Techniques in identifying straight track:
 - Straight line least square fit
 - <u>Tree search tem</u>plate matching algorithm
 - Hough transform mapping points in physical space into lines in parameter space
 - In physical space y = mx + t
 - In parameter space t = -xm + y
 - Co-linear hits becomes intersecting lines in the parameter space
 - Turning straight track identification problem into problem of find maxima in histogram

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight
 - Conformal mapping mapping circles that pass the origin into straight line
 - Riemann track finder mapping 2-D circle into 3-D plane
- Techniques in identifying straight track:
 - Straight line least square fit
 - Tree search template matching algorithm
 - Hough transform mapping points in physical space into lines in parameter space
 - Artificial neutral network favors straight track, but allows small banding angle

- Straight track is easier to find than curved track
- If tracks are straight in one space, we should make the most out of it (PVDIS tracks in r-z space)
- If tracks are not straight, sometimes they can be mapped into other space where they are straight
 - Conformal mapping mapping circles that pass the origin into straight line
 - Riemann track finder mapping 2-D circle into 3-D plane
- Techniques in identifying straight track:
 - Straight line least square fit
 - Tree search template matching algorithm
 - Hough transform mapping points in physical space into lines in parameter space
 - Artificial neutral network favors straight track, but allows small banding angle
- Kalman filter is rather popular fitter in tracking reconstruction, but it may not be the best in various situation
 - Not optimal if noise is non-Gaussian: Bremsstrahlung radiation for electrons
 - Gaussian Sum Filter: approximate noise with Gaussian mixture
 - Deterministic Annealing Filter: deal with competing measurements and reject wrong assignment of hits
- Various machine learning algorithm can be useful as well i.e. boosted decision tree may be useful for seeding and finally selection of tracks

GEM Occupancy							
Threshold	GEM 1 (%)	GEM 2 (%)	GEM 3 (%)	GEM 4 (%)	GEM 5 (%)	GEM 6 (%)	
0	5.00	17.23	8.90	5.00	4.83	3.72	
60	3.49	13.22	6.04	3.57	2.98	2.22	
80	3.09	11.92	5.28	3.18	2.58	1.91	
100	2.75	10.75	4.63	2.84	2.25	1.66	
120	2.47	9.70	4.08	2.55	1.99	1.46	
140	2.21	8.78	3.63	2.31	1.78	1.30	
J/Psi							
Threshold	GEM 1 (%)	GEM 2 (%)	GEM 3 (%)	GEM 4 (%)	GEM 5 (%)	GEM 6 (%)	
0	11.40	22.44	14.89	12.30	12.38	10.25	
60	8.39	17.72	11.00	8.98	8.35	6.69	
80	7.63	16.27	9.95	8.11	7.39	5.88	
100	7.00	14.96	9.05	7.38	6.61	5.22	
120	6.47	13.8	8.29	6.74	5.95	4.68	
140	6.01	12.76	7.62	6.20	5.39	4.22	
						29	