GEM Updates from China

Jianbei Liu

for the SoLID-GEM Chinese Collaboration

University of Science and Technology of China

SoLID Collaboration Meeting August 27, 2016 JLab

SoLID-GEM Chinese Collaboration

China Institute of Atomic Energy (CIAE)

Lanzhou University

Institute of Modern Physics, CAS (IMP)

Tsinghua University

University of Science and Technology of China (USTC)

Upgrades from CIAE

The Procedure of GEM Foil

Collaborated with a Factory

Comparison of Foils

Insufficient development

Good development

Excessive development

Insufficient

Good copper etching

Excessive copper etching

Progress on GEM foil

- CIAE has found a factory to collaborated. The factory is not very big, but has good facilities.
- The factory has produced 30 GEM foils for CIAE, but only 5 of them passed high voltage test. The reason for this is: firstly, they are not very familiar with the fabrication process of GEM foil; secondly, the solution is not very clean. To solve this issue, CIAE is going to support the factory with buying a new etching equipment, which will be used only for GEM foil.
- CIAE has delivered GEM foil to CCNU to test.

The upgrade of Lab

Lead box
X-ray generator
3D GEM test platform
New test chamber

Updates from LZU

Goal

- reduce the local rates by rejecting γ signals according to the time information
- try to reduce the load of DAQ by clustering on hardware level (FPGA)

R&D of GEM detector

New readout panel

New version of triple-layer GEM detector

High voltage and trigger

x-ray imaging by new detector and Daq

80-10-20 30 40 50 60 70 80 90 100 mm

10 cm

R&D of GEM-Daq

coincidence trigger to identify muon and photon

Real signals recorded in Daq

comparing signal amplitudes of different particle

Steps of online track reconstruction

- Divide signals into time slices (1 period for each)
 - Segmentation in readout plane —— cut on signal amplitude
 - Combine adjacent segment —— identify clusters of hits
- Process multi time slices
 - Combine adjacent time slices —— distinguish if signal continues
 - Integrate multi time slices —— identify the start and end of a signal

Resources consumption budget (2048 chs)

from INFN

reports of our code:

Ì	×		SPM.v	×			
	Flow Summa	ry					
	Flow Status Quartus II 64-Bit Version Revision Name Top-level Entity Name		Successful - Wed Aug 03 15:06:08 2016				
			14.1.0 Build 186 12/03/2014 SJ Full Vers				
			retrack retrack				
	Family		Arria II GX				
	Device Timing Models Logic utilization		EP2AGX125EF35C4 Final				
			38 %				
	Combinatio	onal ALUTs	14,092 / 99,280 (14 %)				
	Memory ALUTs		0 / 49,640 (0 %)				
	Dedicated	logic registers	32,224/99,280 (32 %)				
	Total registers Total pins Total virtual pins Total block memory bits DSP block 18-bit elements Total GXB Receiver Channel PCS		32224				
			144 / 512 (28 %) 0				
			73,216 / 6,727,680 (1 %)				
			3 / 576 (< 1 %)				
			0/12(0%)				
	Total GXB Rece	eiver Channel PMA	0/12(0%)				
	Total GXB Tran	ismitter Channel PCS	0/12(0%)				
	Total GXB Tran	ismitter Channel PMA	0/12(0%)				
	Total PLLs		0/6(0%)				
	Total DLLS		0/2(0%)				

: Logic utilization	: 56 %
: Combinational ALUTs	: 21,247 / 48,080 (44 %)
Dedicated logic registers	: 13,382 / 48,080 (28 %)
: Total registers	13661
: Total pins	: 312 / 395 (79 %)
: Total block memory bits	: 1,808,252 / 2,528,640 (72 %)
DSP block 9-bit elements	: 0 / 256 (0 %)
: Total GXB Receiver Channels	: 1 / 8 (13 %)
: Total GXB Transmitter Channels	: 1 / 8 (13 %)
: Total PLLs	: 3 / 4 (75 %)
Total DILS	1/2 (50 %)

Iterms of resources	Total	Usage of current daq	Usage of out code
Combinational ALUTs	48,080	21,247 (44%)	14,092 (29%)
Dedicated registers	48,080	13,382 (28%)	32,224 (67%)
DSP	256	0	3(1%)
Block Memory Bits	2,528,640	1,808,252 (72%)	73,216 (3%)

Try to identify signals of different particle (data)

Future plan

- process multi time slices on FPGA
- test with real beam data?
- communicate with INFN experts
 - try to merge our code into current firmware

Updates from USTC

Spatial Resolution Test

 Tested GEM spatial resolution using collimated X-rays with the APV25-MPD readout system.

Spatial Resolution Results

- 2-d readout board with strip pitch \sim 400 μ m
- Position taken as the center of gravity of charge

- measurement:
- Slit width
- Range of initial photon-electrons
- common mode noise
- APV25 saturation

Low-mass Design with Self-stretching

- 0.5m*1m active area with no spacers.
- Drift and readout boards are made of Kapton + Cu
- All screws and nuts are plastic.
- Honeycomb on both top and bottom sides for mechanical support.

The whole design has been finished.

APV25 hybrid and backplane

- Changed the connector of the APV25 hybrid
 - From Panasonic 130-pin to Hirose 140-pin
- Designed and produced backplanes to host APV25 chips.

The backplane works well with APV25 and GEM. Noise level quite acceptable.

GEM Readout R&D

- Have been developing a general and scalable readout system for MPDG.
 - Main components: ASIC card, adapter card, front-end card

- Front-end chip: VA140 (not suitable for high rate application)
 - 64 channels
 - shaping time: 6.5µs
 - ENC<784e (Cd=100pf)
 - Dynamic range: 0-200fC
 - Linearity: 2%
 - Power consumption: 0.3mW/ch

Test with Detector

- Noise RMS ~ 0.7fC.
- Clear Fe-55 energy spectrum.
- Still a lot of work to optimize and finalize the readout system with actual detectors.

Summary

• CIAE

Progressing towards GEM foil industrialization

• LZU

- Working on online gamma-rejection and clustering

• USTC

Low-mass self-stretching GEM and readout R&D