SoLID Software: Responses to Recommendations

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting December 3, 2016

Ole Hansen (Jefferson Lab)

SoLID Software Update

December 3, 2016 1 / 11

Responses I: "End-to-End" Framework

- Efficient approach: adopt an existing framework
- Developed set of requirements
- Evaluated 6 candidate frameworks. Extensive list of pros/cons
- art framework from Fermilab appears most suitable
- Testing and prototyping underway
- High-level task list developed
- Aim to have usable version ready by mid-2017

Framework Requirements

- Consistent environment for simulation, digitization, reconstruction and physics analysis ("end-to-end")
- Must support multi-pass processing (persistent data objects).
 Strongly prefer standard file format/persistence model (ROOT)
- Should support multiple processing chains per job
- Must have option to output ROOT files directly usable for interactive analysis
- Should support data provenance tracking (metadata generation and passthrough)
- Must be ready for or directly support parallel/distributed processing
- Must be readily available at this time

Frameworks Pros/Cons

Framework	Pros	Cons
art (FNAL)	Large user base Developed by experts Very good documentation Modern ROOT6 support Best match to our requirements	Not multi-threaded, not distributed (but multi-threading planned) Heavy binary installation by default In-house build system Somewhat complex
FairROOT (GSI)	Familiar ROOT environment Large user base (incl. EIC a.t.m.) Distributed processing extension (experimental) Good built-in simulation support	 Absent documentation Poor API definition Old code base Existing code tends to be a mess Single-threaded (unlikely to change) Heavy dependency requirements
Fun4All (PHENIX)	Lightweight Well-tested, proven performance Familiar ROOT environment	One-man project Very PHENIX-centric Absent documentation Very old code base Many missing standard features Single-threaded (unlikely to change)
JANA (JLab Hall D)	 Multi-threaded Lightweight Local expertise 	 Small user base Too many technical limitations In-house DST format (HDDM)
Clara (JLab Hall B)	Multi-threaded and distributed Local expertise	• Small user base • Java based • Very complex • Performance concerns • In-house DST format (EVIO)

NB: Also evaluated Hall A analyzer (Podd), but rejected due to one-pass-only design

Ole Hansen (Jefferson Lab)

Software Milestones

- Draft software design document (by end of 2016)
- Create documentation wiki to collect numerous existing documents (by end of 2016)
- Set up task/issue tracking system (Redmine?)
- Port existing simulations to art (aiming for spring 2017, but big job)
- Start broader adoption by collaboration hopefully by summer 2017. This will obviously be an early, incomplete version of the software. Timing is aggressive.

Improving Project Management

) ① https:// 1ost Visited∨	/redmine.jlab.c	org/projects/po art Y 🙏 Ha	dd all A MySQL G	Google 🛱	ROOT JIRA	Blue Je	earch eans		↓ 1	în ☆ 6	•	S	*
all A An	Projects Help						earch:			Logged in as	ole My ac Analyzer	count	Sign o
Overvier	w Activity	Issues Ga	ntt Calendar	News	Documents	Wiki	Files	Repository	Settings				٩
neral-purpos	se Hall A recor	istruction and a	naiysis software	a wer	nders					_			
• Homepa	ge: https://ha cking	llaweb.jlab.org/	podd/	Manage	er: Ole Hanse	n				Log time (Details Re	port	
• Homepa	ge: https://ha cking open	llaweb.jlab.org/ closed	podd/ Total	Manage	er: Ole Hanse projects	n				Log time (Details Re	port	
• Homepa Issue trac	ge: https://ha cking open 0	llaweb.jlab.org/	podd/ Total 0	Manage Sub Analyze	er: Ole Hanse projects er Parallelizat	n				Log time (Details Re	port	
Homepare Issue trac	ge: https://ha	llaweb.jlab.org/	podd/	Manage Sub Analyze	er: Ole Hanse projects er Parallelizat	n				Log time (Details Re	port	

Responses II: Software Manpower/Resources

- Developed detailed list of software tasks with time estimates
- Compared estimates with those published by GlueX (in 2013)
- SoLID estimate is roughly half of that of GlueX: 22 vs. 42 FTE-years
- Differences largely understood

SoLID Software Manpower Estimate

https://hallaweb.jlab.org/12GeV/SoLID/download/doc/Estimated_SoLID_Offline_Effort.xlsx

Estimated SoLID Software Effort.ods - Gnumeric _ 0								
ile E	dit View Insert Format Tools	Statistics Data Help						
? E	3 A 🛱 👹 😽 🔍 🛅	9 V 6 V	🕘 🗵 /	60 👪 🔐 🗌	100%	-		
Sans	12 a. a. <u>a.</u> = = =	H - 88 9	8 - 4	a		ল ৵ ০৸	× 🖲 🗸	
A1	S 🕘 🖑 👻 🔹	Estimated SoLID o	offline compu	ting effort				
	A	В	C	D	E	F	G	н
1	Estimated SoLID offline comput	ting effort						
2	1-Dec-2016							
3	v2							
4								
5	Simulations							
6	Task	Group	FTE		Scaled FTE-			
7			weeks		weeks			
8								
9	Physics generators	SBU	24					
10	Magnet & support geometry	JLab, ANL	4					
11	GEMs	UVa, Temple						
12	Geometry		4					
13	Digitization		12					
14	LGC	Temple						
15	Geometry		2					
16	Digitization		6					
17	HGC	Duke						
18	Geometry		2					
19	Digitization		6					
20	ECAL	UVa, W&M						
21	Geometry		4					
22	Digitization		12					
23	MRPC	China						
24	Geometry		2					
25	Digitization		4					
26	Digitization testing		20					
27	DAQ/Trigger emulation	JLab	16					
28	Framework integration	JLab	8					
29	Code testing/QA		6					
30	Activities coordination	Duke	12					
31								
32	Subtotal Simulations			144	240			
33	-							
34	Reconstruction							
35	Framework	JLab						
36	Build system		3					
37	ROOT tree output module		6					
38	Multi-threading		12					
39	Distributed architecture		12					
40	Documentation		16					
4.1	Database APL& integration	ILab						

Ole Hansen (Jefferson Lab)

Software Manpower: Comparison with GlueX

Task Group	Labor e (FTE-'	estimate weeks)	Main reasons for difference			
	Gluex	JULID				
Simulation	192	240	Simulation to be integrated into framework.			
Reconstruction	787	355	Adoption of existing framework. Re-use of algorithms. Smaller number of subsystems.			
Calibration	275	103	Smaller number of subsystems.			
Production	275	155	Standard data format. Re-use of workflow tools.			
Analysis	275	100	No PWA analysis and no grid implementa- tion of analysis.			
Data Challenges	62	23	No PWA data challenge.			
Totals	1866	976				

https://halldsvn.jlab.org/repos/trunk/docs/offline/ProjectProgress/OfflineComputingActivities2013.xlsx
 https://hallaweb.jlab.org/12GeV/SoLID/download/doc/Estimated_SoLID_Offline_Effort.xlsx

Director's Review Recommendations III: Data Handling

- **Finding:** "Early exploration of the tools available at Jefferson Lab that can handle the data at the expected scale of SoLID will be crucial in minimizing false starts in software development."
- **Recommendation:** "Closer communication with the other JLab experiments and the JLab computing center is strongly encouraged."

Responses III: Data Handling

- We have been in active communication with the JLab computer center regarding future computing needs for SoLID. Based on current trends, handling of data volumes at the expected scale of SoLID, *viz.* 5-10 PB/year, is already fully managable at JLab today and will likely be routine at the time SoLID runs.
- We are investigating the suitability of the existing JLab workflow management tools (SWIF) for SoLID computing.
- Substantial data for GlueX have just begun to arrive. CLAS12 is expected to go into production mode in 2018. Further, the Hall A SBS program, which will also produce multi-PB data sets, will commence in 2019. The experiences of these groups, as they emerge, will inform future decisions we may have to make for SoLID software development.
- In the long run, it would be beneficial if SoLID software supported distributed and/or grid computing. We will keep this option in mind. Any advanced data processing capabilities would be developed in close collaboration with the computer center and the other halls, who are already exploring massively parallel approaches.